Skip to main content
Log in

Morphological variability, cytotype diversity, and cytogeography of populations traditionally called Dactylorhiza fuchsii in Central Europe

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The morphological variation and cytotype diversity were investigated among Central European populations traditionally recognized as Dactylorhiza fuchsii, recently incorporated in D. maculata s.l. Flow cytometry was employed to assess the ploidy levels of 738 individuals from 77 localities and multivariate morphometrics for a total of 531 individuals from 27 localities. Three ploidy levels were found: diploid (2n = 2x = 40), DNA-triploid and tetraploid (2n = 4x = 80). Whereas diploids and tetraploids often occurred as pure-cytotype populations, individuals of DNA-triploids always co-occurred with at least one of the other cytotypes. Qualitative morphological traits were inferred to be the most important drivers of morphological variation among the investigated plants, with the most striking differences in flower colouration and leaf spotting. The combination of morphological and cytological characters enabled to delimit two separate groups of populations. The first corresponded to D. maculata subsp. fuchsii with morphologically indistinguishable diploid, DNA-triploid and tetraploid individuals, sometimes occurring in mixed-ploidy populations. A complex geographical pattern of cytotype distributions was observed, with diploids scatteredly occurring throughout Central Europe except for Bohemian Massif, which was dominated by tetraploids. The other group of populations represented newly described in this study D. maculata subsp. sooana, subsp. nova, morphologically well-defined and strictly diploid taxon with a restricted geographical range, occurring in the Western Carpathians. A new combination for a hybrid taxon D. × dinglensis nothosubsp. smitakii, comb. nova (= D. maculata subsp. sooana × D. majalis subsp. majalis), was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard SMD, Såstad SM, Greilhuber J, Moen A (2005) A secondary hybrid zone between diploid Dactylorhiza incarnata ssp. cruenta and allotetraploid D. lapponica (Orchidaceae). Heredity 94:488–496. https://doi.org/10.1038/sj.hdy.6800643

    Article  CAS  PubMed  Google Scholar 

  • Aceto S, Caputo P, Cozzolino S, Gaudio L, Moretti A (1999) Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Molec  Phylogen Evol 13:67–76. https://doi.org/10.1006/mpev.1999.0628

    Article  CAS  PubMed  Google Scholar 

  • Ackerman JD, Cuevas AA, Hof D (2011) Are deception-pollinated species more variable than those offering a reward? Pl Syst Evol 293:91–99. https://doi.org/10.1007/s00606-011-0430-6

    Article  Google Scholar 

  • Amich F, García-Barriuso M, Bernardos S (2007) Polyploidy and speciation in the orchid flora of the Iberian Peninsula. Bot Helv 117:143–157. https://doi.org/10.1007/s00035-007-0804-0

    Article  Google Scholar 

  • Averyanov LV (1982) Dactylorhiza maculata s. l. (Orchidaceae) na territorii SSSR. Bot Zhur 67:303–312 (in Russian)

    Google Scholar 

  • Averyanov LV (1990) A review of the genus Dactylorhiza. In: Arditti J (ed) Orchid biology Reviews and perspectives, vol 5. Timber Press, Portland, pp 159–206

    Google Scholar 

  • Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O (2016) Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity 116:351–361. https://doi.org/10.1038/hdy.2015.98

    Article  CAS  PubMed  Google Scholar 

  • Bateman RM, Denholm I (1988) A reappraisal of the British and Irish dactylorchids, 3. The Spotted-Orchids. Watsonia 17:319–349

    Google Scholar 

  • Bateman RM, Denholm I (1989) On measuring marsh-orchids. Morphometric procedure, taxonomic objectivity and marsh-orchid systematics. Watsonia 17:449–462

    Google Scholar 

  • Bateman RM, Murphy ARM, Hollingsworth PM, Hart ML, Denholm I, Rudall PJ (2018) Molecular and morphological phylogenetics of the digitate-tubered clade within subtribe Orchidinae s.s. (Orchidaceae: Orchideae). Kew Bull 73:54. https://doi.org/10.1007/s12225-018-9782-1

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker BM, Walker S, Bojesen RH, Singmann H, Dai B, Grothendieck G, Green P (2019) lme4: Linear Mixed effects Models Using S4 Classes. Available at: http://lme4.r-forge.r-project.org/. Accessed 1 Feb 2019

  • Batoušek P (1995) Zur Kenntnis von Dactylorhiza fuchsii (Druce) Soó ssp. sooana (Borsos) Borsos. J Eur Orchid 27:51–74

    Google Scholar 

  • Batoušek P (1997) Zwei neue Hybriden aus der Tschechischen Republik. J Eur Orchid 29:641–652

    Google Scholar 

  • Baumann H, Künkele S, Lorenz R (2002) Taxonomische Liste der Orchideen Deutschlands. J Eur Orchid 34:129–206

    Google Scholar 

  • Bertolini V, del Prete C, Garbari F (2000) Karyological and biometrical studies on some species of the genus Dactylorhiza Necker ex Nevski, sect. Dactylorhiza (Orchidaceae) of Central-Northern Italy. Port Acta Biol 19:249–265

    Google Scholar 

  • Borsos O (1959) Dactylorchis fuchsii Druce et son affinité dans les flores Hongroise et Carpatique. Acta Bot Acad Sci Hung 5:321–325

    Google Scholar 

  • Borsos O (1961) Geobotanische Monographie der Orchideen der pannonischen und karpatischen Flora V. Ann Univ Sci Budapest Rolando Eotvos, Sect Biol 4:51–82

    Google Scholar 

  • Bory S, Catrice O, Brown S, Leitch IJ, Gigant R, Chiroleu F, Grisoni M, Duval MF, Besse P (2008) Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 51:816–826. https://doi.org/10.1139/G08-068

    Article  CAS  PubMed  Google Scholar 

  • Brandrud MK, Baar J, Lorenzo MT, Athanasiadis A, Bateman RM, Chase MW, Hedrén M, Paun O (2020) Phylogenomic relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae). Syst Biol 69:91–109. https://doi.org/10.1093/sysbio/syz035

    Article  CAS  PubMed  Google Scholar 

  • Brown SC, Bourge M, Maunoury N, Wong M, Wolfe Bianchi M, Lepers-Andrzejewski S, Besse P, Siljak-Yakovlev S, Dron M, Satiat-Jeunemaître B (2017) DNA remodeling by Strict Partial Endoreplication in Orchids, an original process in the Plant Kingdom. Genome Biol Evol 9:1051–1071. https://doi.org/10.1093/gbe/evx063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bureš L (2013) Chráněné a ohrožené rostliny Chráněné krajinné oblasti Jeseníky. Rubico, Olomouc

    Google Scholar 

  • Buttler KP (2000) Orchideje. Planě rostoucí druhy a poddruhy Evropy, Přední Asie a severní Afriky. Ikar, Praha

    Google Scholar 

  • Cauwet-Marc AM, Balayer M (1984) Les genres Orchis L., Dactylorhiza Necker ex Nevski, Neotinea Reichb. et Traunsteinera Reichb.: caryologie et proposition de phylogénie et d’évolution. Bot Helv 94:391–406

    Google Scholar 

  • Danihelka J, Chrtek J Jr, Kaplan Z (2012) Checklist of vascular plants of the Czech Republic. Preslia 84:647–811

    Google Scholar 

  • De hert K, Jacquemyn H, Van Glabeke S, Roldán-Ruiz I, Vandepitte K, Leus L, Honnay O (2012) Reproductive isolation and hybridization in sympatric populations of three Dactylorhiza species (Orchidaceae) with different ploidy levels. Ann Bot (Oxford) 109:709–720. https://doi.org/10.1093/aob/mcr305

    Article  PubMed  Google Scholar 

  • Delforge P (2006) Orchids of Europe. North Africa and the Middle East. A&C Black, London

    Google Scholar 

  • Devillers P, Devillers-Terschuren J (2000) Dactylorhiza sudetica (Pöch ex Rchb. fil. 1851) Averyanov 1982 dans les monts des Géants. Naturalistes Belges 81:331–338

    Google Scholar 

  • Devos N, Tyteca D, Raspé O, Wesselingh RA, Jacquemart A-L (2003) Patterns of chloroplast diversity among western European Dactylorhiza species (Orchidaceae). Pl Sys Evol 243:85–97. https://doi.org/10.1007/s00606-003-0068-0

    Article  CAS  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot (Oxford) 82(Suppl. A):17–26

    Article  Google Scholar 

  • Druce GC (1915) Orchis maculata L. and O. fuchsii. Rep Bot Exch Club Soc Brit Isles 4:99–108

    Google Scholar 

  • Dufrêne M, Gathoye J-L, Tyteca D (1991) Biostatistical studies on western European Dactylorhiza (Orchidaceae) – the D. maculata group. Pl Syst Evol 175:55–72

    Article  Google Scholar 

  • Eccarius W (2016) Die Orchideengattung Dactylorhiza. Phylogenie, Taxonomie, Morphologie, Biologie, Verbreitung, Ökologie und Hybridisation. W. Eccarius, Eisenach

    Google Scholar 

  • Efimov PG, Philippov EG, Krivenko DA (2016) Allopolyploid speciation in Siberian Dactylorhiza Orchidaceae Orchidoideae. Phytotaxa 258:101–120. https://doi.org/10.11646/phytotaxa.258.2.1

    Article  Google Scholar 

  • Fischer MA, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein und Südtirol, 3rd edn. Biologiezentrum der Oberösterreichischen Landesmuseen, Linz

    Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gathoye J-L, Tyteca D (1987) Étude biostatistique des Dactylorhiza (Orchidaceae) de Belgique et des territoires voisins. Bull Jard Bot Natl Belg 57:389–424

    Article  Google Scholar 

  • Gigord LDB, Macnair MR, Smithson A (2001) Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soó. Proc Natl Acad Sci USA 98:6253–6255. https://doi.org/10.1073/pnas.111162598

    Article  CAS  Google Scholar 

  • GIROS (2009) Orchidee d’Italia. Guida alle orchidee spontanee. Il Castello, Cornaredo

    Google Scholar 

  • Groll M (1966) Fruchtansatz, Bestäubung und Merkmalsanalyse bei diploiden und polyploiden Sippen von Dactylorchis (Orchis) maculata und Gymnadenia conopsea. Österr Bot Z 112:657–700

    Article  Google Scholar 

  • Harrap A, Harrap S (2009) Orchids of Britain and Ireland. A field and site guide. A&C Black, London

    Google Scholar 

  • Hedrén M (1996) Genetic differentiation, polyploidization and hybridization in northern European Dactylorhiza (Orchidaceae): evidence from allozyme markers. Pl Syst Evol 201:31–55. https://doi.org/10.1007/BF00989050

    Article  Google Scholar 

  • Hedrén M (2001) Systematics of the Dactylorhiza euxina/incarnata/maculata polyploid complex (Orchidaceae) in Turkey: evidence from allozyme data. Pl Syst Evol 229:23–44. https://doi.org/10.1007/s006060170016

    Article  Google Scholar 

  • Hedrén M, Fay MF, Chase MW (2001) Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Amer J Bot 88:1868–1880. https://doi.org/10.2307/3558363

    Article  PubMed  Google Scholar 

  • Hedrén M, Nordström S, Ståhlberg D (2008) Polyploid evolution and plastid DNA variation in the Dactylorhiza incarnata/maculata complex (Orchidaceae) in Scandinavia. Molec Ecol 17:5075–5091. https://doi.org/10.1111/j.1365-294X.2008.03965.x

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison J (1951) A comparison of some Swedish and British forms of Orchis maculata L. sens. lat. Svensk Bot Tidskr 45:608–635

    Google Scholar 

  • Heslop-Harrison J (1968) Genetic system and ecological habit as factors in Dactylorchid variation. Jahresber Naturwiss Vereins Wuppertal 21(22):20–27

    Google Scholar 

  • Hřibová E, Holušová K, Trávníček P, Petrovská B, Ponert J, Šimková H, Kubátová B, Jersáková J, Čurn V, Suda J, Doležel J, Vrána J (2016) The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next-generation sequencing. Genome Biol Evol 8:1996–2005. https://doi.org/10.1093/gbe/evw141

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagiełło M, Lankosz-Mróz M (1988) Cytotaxonomic studies in the Dactylorhiza maculata (L.) Soó group in Poland (Orchidaceae). – Fragm Florist Geobot 31–32:385–394

    Google Scholar 

  • Jagiełło M (1988) Analysis of population variability and distribution of species from the Dactylorhiza maculata group (Orchidaceae) in Poland. Fragm Florist Geobot 31–32:333–383

    Google Scholar 

  • Kaplan Z, Danihelka J, Šumberová K, Chrtek J Jr, Rotreklová O, Ekrt L, Štěpánková J, Taraška V, Trávníček B, Prančl J, Ducháček M, Hroneš M, Kobrlová L, Horák D, Wild J (2017) Distributions of vascular plants in the Czech Republic. Preslia 89:333–439. https://doi.org/10.23855/preslia.2017.333

    Article  Google Scholar 

  • Kliment J (1999) Komentovaný prehľad vyšších rastlín flóry Slovenska, uvádzaných v literatúre ako endemické taxóny. Bull Slov Bot Spoločn 21(Suppl. 4):1–434

    Google Scholar 

  • Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC (2017) Mixed-ploidy species: progress and opportunities in polyploid research. Trends Pl Sci 22:1041–1055. https://doi.org/10.1016/j.tplants.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  • Krahulcová A (2003) Chromosome numbers in selected monocotyledons (Czech Republic, Hungary and Slovakia). Preslia 75:97–113

    Google Scholar 

  • Kreutz CAJ (2004) Kompendium der Europäischen Orchideen. Kreutz Publishers, Landgraaf

    Google Scholar 

  • Kubát K (2010) Dactylorhiza Nevski – prstnatec. In: Štěpánková J, Chrtek J, Kaplan Z (eds) Květena České republiky 8. Academia, Praha, pp 502–523

    Google Scholar 

  • Kurtto A, Lampinen R, Piirainen M, Uotila P (2019) Checklist of the vascular plants of Finland. Suom Putkilokasvien Luettelo Norrlinia 34:1–206

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663. https://doi.org/10.1111/j.1095-8312.2004.00349.x

    Article  Google Scholar 

  • Lenth R, Singmann H, Love J, Buerkner P, Herve M (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. Available at: https://cran.r-project.org/web/packages/emmeans/index.html. Accessed 1 Feb 2019

  • Lord RM, Richards AJ (1977) A hybrid swarm between the diploid Dactylorhiza fuchsii (Druce) Soó and the tetraploid D. purpurella (T. & T. A. Steph.) Soó in Durham. Watsonia 11:205–210

    Google Scholar 

  • Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21

    Google Scholar 

  • Löve Á (1971) IOPB Chromosome number reports XXXIV. Taxon 20:785–797

    Article  Google Scholar 

  • Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132. https://doi.org/10.1080/00087114.1998.10589127

    Article  Google Scholar 

  • Májovský J (ed.) (1976) Index of chromosome numbers of Slovakian flora (Part 5). Acta Fac Rerum Nat Univ Comen Bot 25:1–18

    Google Scholar 

  • Májovský J (ed) (1978) Index of chromosome numbers of Slovakian flora (Part 6). Acta Fac Rerum Nat Univ Comen Bot 26:1–42

    Google Scholar 

  • Měsíček J, Javůrková-Jarolímová V (1992) List of chromosome numbers of the Czech vascular plants. Academia, Praha

    Google Scholar 

  • Meyer FJ (1968) Genetisches System und ökologisches Verhalten als Faktoren der Variantenbildung bei Dactylorchis. Jahresber Naturwiss Vereins Wuppertal 21(22):28–31

    Google Scholar 

  • Molnár VA, Sulyok J, Magos G, Bódis J (2011) Erdei ujjaskosbor – Dactylorhiza fuchsii (Druce) Soó 1962. In: Molnár VA (ed.) Magyarország orchideáinak atlasza. Kossuth Kiadó, Budapest, pp 353–354

    Google Scholar 

  • Naczk AM, Górniak M, Szlachetko DL, Ziętara MS (2015) Plastid DNA haplotype diversity and morphological variation in the Dactylorhiza incarnata/maculata complex (Orchidaceae) in northern Poland. Bot J Linn Soc 178:121–137. https://doi.org/10.1111/boj.12267

    Article  Google Scholar 

  • Naimi B (2017) Uncertainty analysis for species distribution models. Available at: https://cran.r-project.org/web/packages/usdm/index.html. Accessed 31 Jul 2019

  • Narbona E, Wang H, Ortiz PL, Arista M, Imbert E (2017) Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Pl Biol (Stuttgart) 20:8–20. https://doi.org/10.1111/plb.12575

    Article  Google Scholar 

  • Nordström S, Hedrén M (2009) Evolution, phylogeography and taxonomy of allopolyploid Dactylorhiza (Orchidaceae) and its implications for conservation. Nordic J Bot 27:548–556. https://doi.org/10.1111/j.1756-1051.2009.00548.x

    Article  Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. https://doi.org/10.1007/s11135-006-9018-6

    Article  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17. https://doi.org/10.1111/j.1469-8137.2009.03142.x

    Article  CAS  PubMed  Google Scholar 

  • Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Molec Biol Evol 27:2465–2473. https://doi.org/10.1093/molbev/msq150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen HÆ (1998) Species concept and guidelines for infraspecific taxonomic ranking in Dactylorhiza (Orchidaceae). Nordic J Bot 18:289–310. https://doi.org/10.1111/j.1756-1051.1998.tb01881.x

    Article  Google Scholar 

  • Pedersen HÆ (2009) Apochromic populations of Dactylorhiza incarnata s. l. (Orchidaceae): diversity and systematic significance as revealed by allozyme markers and morphology. Bot J Linn Soc 159:396–407. https://doi.org/10.1111/j.1095-8339.2009.00954.x

    Article  Google Scholar 

  • Pikner T (2012) Taxonomic diversity of Dactylorhiza on Saaremaa. J Hardy Orchid Soc 9:128–143

    Google Scholar 

  • Pillon Y, Fay MF, Hedrén M, Bateman RM, Devey DS, Shipunov AB, van der Bank M, Chase MW (2007) Evolution and temporal diversification of western European polyploid species complexes in Dactylorhiza (Orchidaceae). Taxon 56:1185–1208. https://doi.org/10.2307/25065911

    Article  Google Scholar 

  • Pillon Y, Fay MF, Shipunov AB, Chase MW (2006) Species diversity versus phylogenetic diversity: a practical study in the taxonomically difficult genus Dactylorhiza (Orchidaceae). Biol Conservation 129:4–13. https://doi.org/10.1016/j.biocon.2005.06.036

    Article  Google Scholar 

  • Ponert J (2019) Dactylorhiza Nevski – prstnatec (vstavač). In: Kaplan Z, Danihelka J, Chrtek J Jr, Kirschner J, Kubát K, Štech M, Štěpánek J (eds) Klíč ke květeně České republiky. Adademia, Praha, pp 183–187

    Google Scholar 

  • Popelka O, Trávníček B, Šiková P, Jandová M, Duchoslav M (2019) Natural hybridization between diploid Ficaria calthifolia and tetraploid Ficaria verna subsp. verna in central Europe: evidence from morphology, ecology and life-history traits. Preslia 91:179–212. https://doi.org/10.23855/preslia.2019.179

    Article  Google Scholar 

  • Popelka O, Sochor M, Duchoslav M (2019b) Reciprocal hybridization between diploid Ficaria calthifolia and tetraploid Ficaria verna subsp. verna: evidence from experimental crossing, genome size and molecular markers. Bot J Linn Soc 189:293–310. https://doi.org/10.1093/botlinnean/boy085

    Article  Google Scholar 

  • Potůček O (1969) Klíč k určování československých druhů čeledi Orchidaceae. Východočeské muzeum v Pardubicích, Pardubice

    Google Scholar 

  • Procházka F (1979) Okruh prstnatce plamatého (Dactylorhiza maculata agg.) v Československu. Zprávy Českoslov Bot Společ 14:9–12

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Annual Rev Ecol Evol Syst 29:467–501. https://doi.org/10.1146/annurev.ecolsys.29.1.467

    Article  Google Scholar 

  • Redl K (2003) Wildwachsende Orchideen in Österreich – faszinierend und schützenswert, 3rd edn. K. Redl Eigenverlag, Altenmarkt

    Google Scholar 

  • Reinhard HR, Gölz P, Peter R, Wildermuth H (1991) Die Orchideen der Schweiz und angrenzender Gebiete. Fotorotar AG, Egg

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Meth 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senghas K (1968) Taxonomische Übersicht der Gattung Dactylorhiza Necker ex Nevski. Jahresber Naturwiss Vereins Wuppertal 21(22):32–67

    Google Scholar 

  • Singmann H, Bolker B, Westfall J, Aust F (2016) afex: Analysis of Factorial Experiments. R package version 0.16–1. Available at: https://CRAN.R-project.org/package=afex. Accessed 1 Feb 2019

  • Skalińska M, Banach-Pogan E, Wcisło H et al (1957) Further studies in chromosome numbers of Polish Angiosperms. Acta Soc Bot Poloniae 26:215–246

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30. https://doi.org/10.2307/25065732

    Article  Google Scholar 

  • Soó R (1980) Dactylorhiza Necker ex Nevski. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 5. Cambridge University Press, Cambridge, pp 335–337

    Google Scholar 

  • Spoelhof JP, Soltis PS, Soltis DE (2017) Pure polyploidy: closing the gaps in autopolyploid research. J Syst Evol 55:340–352. https://doi.org/10.1111/jse.12253

    Article  Google Scholar 

  • Ståhlberg D, Hedrén M (2008) Systematics and phylogeography of the Dactylorhiza maculata complex (Orchidaceae) in Scandinavia: insights from cytological, morphological and molecular data. Pl Syst Evol 273:107–132. https://doi.org/10.1007/s00606-008-0035-x

    Article  Google Scholar 

  • Ståhlberg D, Hedrén M (2010) Evolutionary history of the Dactylorhiza maculata polyploid complex (Orchidaceae). Biol J Linn Soc 101:503–525. https://doi.org/10.1111/j.1095-8312.2010.01505.x

    Article  Google Scholar 

  • Ståhlberg D (2009) Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s. l. (Orchidaceae). Evol Ecol 23:295–328. https://doi.org/10.1007/s10682-007-9228-y

    Article  Google Scholar 

  • Ströhle W (2003) Nomenklatorische Liste der europäischen Orchideentaxa – Arten und Unterarten. J Eur Orchid 35:771–860

    Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450. https://doi.org/10.2307/25065591

    Article  Google Scholar 

  • Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, Veselý P, Šmerda J, Rotreklová O, Bureš P (2019) Genome sizes and genomic guanine cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91:117–142. https://doi.org/10.23855/preslia.2019.117

    Article  Google Scholar 

  • ter Braak C, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca

    Google Scholar 

  • Thórsson ÆT, Salmela E, Anamthawat-Jónsson K (2001) Morphological, cytogenetic, and molecular evidence for introgressive hybridization in birch. J Heredity 92:404–408. https://doi.org/10.1093/jhered/92.5.404

    Article  PubMed  Google Scholar 

  • Trávníček P, Kubátová B, Čurn V, Rauchová J, Krajníková E, Jersáková J, Suda J (2011) Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann Bot (Oxford) 107:77–87. https://doi.org/10.1093/aob/mcq217

    Article  PubMed  Google Scholar 

  • Trávníček P, Ponert J, Urfus T, Jersáková J, Vrána J, Hřibová E, Doležel J, Suda J (2015) Challenges of flow-cytometric estimation of nuclear genome size in Orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytom Part A 87:958–966. https://doi.org/10.1002/cyto.a.22681

    Article  CAS  Google Scholar 

  • Tyteca D, Gathoye J-L (2003) Morphometric analyses of the Dactylorhiza maculata (L.) Soó group in western Europe. Ber Arbeitskreis Heimische Orchid 20:1–32

    Google Scholar 

  • Uhríková A (2007) New records in Dactylorhiza. In: Marhold K, Mártonfi P, Mereďa P Jr, Mráz P (eds) Chromosome number survey of the ferns and flowering plants of Slovakia. Veda, Bratislava, p 221

    Google Scholar 

  • Vaucher C (1966) Contribution à l’étude cytologique du genre Dactylorchis (Klinge) Vermeulen. Bull Soc Neuchâtel Sci Nat 89:75–85

    Google Scholar 

  • Vereecken NJ, Schiestl FP (2009) On the roles of colour and scent in a specialized floral mimicry system. Ann Bot (Oxford) 104:1077–1084. https://doi.org/10.1093/aob/mcp208

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermeulen P (1947) Studies on Dactylorchids. Drukkerij Fa. Schotanus & Jens, Utrecht

    Google Scholar 

  • Vermeulen P (1968) Dactylorchis maculata und ihre Formen. Jahresber Naturwiss Vereins Wuppertal 21(22):68–76

    Google Scholar 

  • Vlačiha V (2013) Prstnatce České republiky. ČSOP Launensia, Ústí nad Labem

    Google Scholar 

  • Vlčko J, Dítě D, Kolník M (2003) Vstavačovité Slovenska. ZO SZOPK Orchidea, Zvolen

    Google Scholar 

  • Vöth W, Greilhuber J (1980) Zur Karyosystematik von Dactylorhiza maculata s.l. und ihrer Verbreitung, insbesondere in Niederösterreich. Linz Biol Beitr 12:415–468

    Google Scholar 

  • Vöth W (1978) Biometrische Untersuchungen an Dactylorhiza maculata s. l. – Sippen in Niederösterreich (Orchidaceae). Linz Biol Beitr 10:179–215

    Google Scholar 

  • Weiss H, Stuessy TF, Grau J, Baeza CM (2003) Chromosome reports from South American Hypochaeris (Asteraceae). Ann Missouri Bot Gard 90:56–63.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to many botanists who guided us in the field, helped us with searching localities or samplings, namely, A. Čejková, I. Jongepierová, A. Kantor, N. Kantorová, J. Košnar, E. Pietorová, J. Plekanec, M. Popelářová, M. & R. Puscarciuc, P. Salenka, A. Schmotzer, G. Schneeweiss, R. Štencl, Z. Václavová, V. Vlačiha, M. & M. Wolanin and many others. We are grateful to M. Hroneš and M. Jandová for service of the FCM laboratory at the Palacký University and their methodological support, as well as J. Doležel and J. Vrána, who enabled us to work in the laboratory of the Institute of Experimental Botany in Olomouc. We furthermore appreciate M. Oulehlová, who scanned the type specimen, and P. Trávníček for valuable consultations. We are grateful to both reviewers for critical reading and improvement of the manuscript. The authorities in nature conservation are acknowledged for granting us with the necessary permits. Research was supported by internal grant of the Palacký University IGA_PrF_2021_001 and by Austrian Federal Ministry of Education, Science and Research (BMBWF) within program Aktion CZ-AT, administrated by OeAD-GmbH.

Funding

VT was supported by internal grant of the Palacký University IGA_PrF_2021_001 and by Austrian Federal Ministry of Education, Science and Research within program Aktion CZ-AT, administrated by OeAD-GmbH.

Author information

Authors and Affiliations

Authors

Contributions

VT, PB, and BT conceived the project and conducted the field work. VT, EMT and HWS performed the analysis of genome size and chromosome numbers. MD designed and conducted the statistical analysis. VT drafted the manuscript with significant contributions of MD and BT. All authors commented on and approved the manuscript. BT supervised the project.

Corresponding author

Correspondence to Vojtěch Taraška.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Martin A. Lysak.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Locality details of Dactylorhiza *fuchsii.

Online Resource 2. Details to (sub)populations of Dactylorhiza *fuchsii. Averaged relative DNA content (= fluorescence ratios between the positions of the sample and internal reference standard G0/G1 peaks) of investigated populations.

Online Resource 3. Explanations to quantitative characters used in the morphometrics.

Online Resource 4. Relative DNA content (= fluorescence ratios between the positions of the sample and internal reference standard G0/G1 peaks) of six plants with counted chromosome numbers; the stain was either DAPI or PI. All values are calculated relative to the Pisum sativum cv. ‘Ctirad’ as internal reference standard.

Online Resource 5. Absolute genome sizes (GS) of five individuals of Dactylorhiza *fuchsii estimated by flow cytometry.

Online Resource 6. Box plots of characters analysed for the fuchsii-2x, fuchsii-4x and sooana groups.

Online Resource 7. Holotype of Dactylorhiza maculata subsp. sooana Batoušek, Taraška & Trávn.

Online Resource 8. Images of Dactylorhiza maculata subsp. sooana, D. maculata subsp. fuchsii and D. ×dinglensis nothosubsp. smitakii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taraška, V., Batoušek, P., Duchoslav, M. et al. Morphological variability, cytotype diversity, and cytogeography of populations traditionally called Dactylorhiza fuchsii in Central Europe. Plant Syst Evol 307, 51 (2021). https://doi.org/10.1007/s00606-021-01770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-021-01770-3

Keywords

Navigation