Skip to main content
Log in

Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

In 2008–2009, a rescue excavation uncovered an intact Late Bronze Age well in Sa Osa, Sardinia (Italy). The structure yielded a large number of waterlogged plant remains, of which a group of melon seeds (Cucumis melo L.) were some of the most remarkable. These seeds represent the earliest recorded remains of this taxon in the Western Mediterranean and are some of the oldest ever recorded. The plant remains were preserved in anoxic conditions and were found in a perfect state of conservation, making them ideal candidates for morphometric and molecular characterisation. A total of 96 parameters, measured using an automatic image analysis system, were specifically designed to evaluate the morphological features of 15 preserved whole seeds. DNA extraction from archaeological samples followed a procedure specifically set up to avoid any kind of contamination. A 123-SNP genotyping platform that had been validated previously was used. The morphological and molecular data of the archaeological seeds were successfully compared with those of a set of 179 accessions, including landraces, of feral and wild melons from Europe, Africa, and Asia. Both analyses confirmed that these ancient seeds did not belong to a wild melon, but instead to a cultivated one. This primitive melon could have belonged to a group of ancestral non-sweet or semi-sweet forms of chate, flexuosus, or ameri varieties, showing similarities to North African and Central Asian accessions. This finding is coherent with the reportedly important role of cucumber-like melons in the species’ diversification process and with the accepted role of the ameri group as the ancestors of the modern sweet varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Álvarez Martínez JM, Caldera P, de la Barrera JL, Nogales T, Velázquez A (2000) Museo Nacional de Arte Romano. Electra, Madrid

    Google Scholar 

  • Argyris JM, Garcia-Mas J, Jahrmann T, Fernández M, Picó B, Gibon Y (2014) Development of recombinant sub-NILs containing smaller introgressions of QTL ssc5.1 determined to be involved in the accumulation of sugar via MAS and high throughput SNP genotyping. In: Havey M, Weng Y, Day B, Grumet R (eds) Cucurbitaceae 2014 proceedings. Michigan (USA) October 12-16th, pp 108–110

    Google Scholar 

  • Attene G, Rodriguez M (2008) Risorse genetiche di specie ortive della Sardegna. Euro Editrice, Sassari

    Google Scholar 

  • Avital A, Paris HS (2014) Cucurbits depicted in Byzantine mosaics from Israel, 350–600 CE. Ann Bot 114:203–222

    Google Scholar 

  • Bacchetta G, Escobar P, Grillo O, Mascia F, Venora G (2011a) Seed image analysis provides evidence of taxonomical differentiation within the Lavatera triloba aggregate (Malvaceae). Flora 206:468–472

    Google Scholar 

  • Bacchetta G, Fenu G, Grillo O, Mattana E, Venora G (2011b) Identification of Sardinian species of Astragalus section melanocercis (Fabaceae) by seed image analysis. Ann Bot Fenn 48:449–454

    Google Scholar 

  • Bacchetta G, Grillo O, Mattana E, Venora G (2008) Morpho-colorimetric characterization by image analysis to identify diaspores of wild plant species. Flora 203:669–682

    Google Scholar 

  • Bakels C, Jacomet S (2003) Access to luxury food in Central Europe during the Roman period: the archaeobotanical evidence. World Archaeol 34:542–557

    Google Scholar 

  • Balmelle C (1990) Recherches franco-tunisiennes sur la mosaïque de l’Afrique antique, part 1, Xenia. L’Ecole Française de Rome, Rome

    Google Scholar 

  • Baratte F (1978) Catalogue des mosaïques romaines et paléchretiénnes du Musée du Louvre. Éditions de la Réunion des musées nationaux, Paris

    Google Scholar 

  • Bates DM, Robinson RW (1995) Cucumbers, melons and water-melons. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific, Harlow, pp 89–96

    Google Scholar 

  • Beneš J, Čulíková V, Kosňovská J, Frolík J, Matiášek J (2012) New plants at Prague Castle and Hradčany in the early Modern period: a history of selected species. Interdisciplinaria Archaeologica-Natural Sciences in Archaeology 3(1):103–114

    Google Scholar 

  • Bernardini P, Perra M (2012) I nuragici, i fenici e gli altri, Sardegna e Mediterraneo tra Bronzo Finale e Prima Età del Ferro. Delfino Editore, Sassari

    Google Scholar 

  • Blanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F et al (2011) Melon transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery or high throughput genotyping across the species. Plant Genome 4:118–131

    Google Scholar 

  • Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernández-Pedrosa V, Collado C et al (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280

    Google Scholar 

  • Blanchard-Lemée M, Ennaïfer M, Slim H, Slim L (1995) Sols de l’Afrique romaine: Mosaïques de Tunisie. Imprimerie Nationale Editions, Paris

    Google Scholar 

  • Bottema S, Sarpaki A (2003) Environmental change in Crete: a 9000-year record of Holocene vegetation history and the effect of the Santorini eruption. The Holocene 13:733–749

    Google Scholar 

  • Brown TA, Cappellini E, Kistler L, Lister DL, Oliveira HR, Wales N, Schlumbaum A (2015) Recent advances in ancient DNA research and their implications for archaeobotany. Veg Hist Archaeobot 24:207–214

    Google Scholar 

  • Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E (2010) Genetic diversity of Cucumis melo. Hortic Rev 36:165–198

    Google Scholar 

  • Castelletti L, Castiglioni E, Rottoli M (2001) L’agricoltura dell’Italia settentrionale dal Neolitico al Medioevo. In: Failla O, Forni G (eds) Le piante coltivate e la loro storia. Dalle origini al transgenico in Lombardia nel centenario della riscoperta della genetica di Mendel. Franco Angeli Editore, Milano, pp 33–84

    Google Scholar 

  • Chang KC (1973) Radiocarbon dates from China, some interim interpretations. Curr Anthropol 14:525–528

    Google Scholar 

  • Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139

    Google Scholar 

  • Costantini L (1977) Le Piante. In: Tucci G (ed) La città bruciata del deserto salato. Erizzo, Venezia, pp 159–171

    Google Scholar 

  • Costantini L (1987) Appendix B. Vegetal remains. In: Stacul G (ed) Prehistoric and protohistoric Swat, Pakistan. Instituto Italiano per il Medio ed Estremo Orientale, Rome, pp 155–165

    Google Scholar 

  • Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M et al (2011) Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol 76:1–18

    Google Scholar 

  • Darby WJ, Ghalioungui P, Grivetti L (1977) Food, the gift of Osiris. Academic Press, London

    Google Scholar 

  • Díaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z et al (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.) BMC Plant Biol 11:111

    Google Scholar 

  • Díaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R et al (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breeding 35:188

    Google Scholar 

  • Druzhkova AS, Vorobieva NV, Trifonov VA, Graphodatsky AS (2015) Ancient DNA: results and prospects (the 30th anniversary). Russ J Genet 51(6):529–544

    Google Scholar 

  • El Hadidi MN, Fahmy AGED, Willerding U (1996) The paleoethnobotany of locality 11C, Hierakonpolis (3800-3500 BC); Egypt. Taeckholmia 16:45–60

    Google Scholar 

  • Elbaum R, Melamed-Bessudo C, Boaretto E, Galili E, Lev-Yadun S, Levy AA et al (2005) Ancient olive DNA in pits, preservation, amplification and sequence analysis. J Archaeol Sci 33:77–88

    Google Scholar 

  • Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J et al (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126:1285–1303

    Google Scholar 

  • Esteras C, Nuez F, Picó B (2012) Genetic diversity studies in cucurbits using molecular tools. In: Wang Y, Behera TK, Kole C (eds) Cucurbits: genetics, genomics and breeding of cucurbits. Science Publishers Inc, New Hampshire, pp 140–198

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Google Scholar 

  • Fahmy AGED (2001) Plant remains in gut contents of ancient Egyptian predynastic mummies (3750-3300 BC). J Biol Sci 1:772–774

    Google Scholar 

  • Fahmy AGED (2003) Palaeoethnobotanical studies of Egyptian predynastic cemeteries: new dimensions and contributions. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields. Progress in African archaeobotany. Heinrich Barth Institut, Frankfurt, pp 95–106

    Google Scholar 

  • Fujishita N (1983) Genetic diversity and phylogenetic differentiation in melon. Curr Top Plant Breed 24:3–21

    Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924

    Google Scholar 

  • Fuller DQ (2012) New archaeobotanical information on plant domestication from macro-remains: tracking the evolution of domestication syndrome traits. In: Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB, McGuire PE, Qualset CO (eds) Biodiversity in agriculture. Domestication, evolution, and sustainability. Cambridge University Press, Cambridge, pp 110–135

    Google Scholar 

  • Fuller DQ, Madella M (2001) Issues in Harappan Archaeobotany: retrospect and prospect. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect. Volume 2. Protohistory. Archaeology of the Harappan civilization. Indian Council of Historical Research, New Delhi, pp 317–390

    Google Scholar 

  • Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 60:11–18

    Google Scholar 

  • Germer R (1985) Flora des pharaonischen Ägypten. Deutsches Archäologisches Institut, Abt. Kairo, Sonderschr

  • Gilbert MT, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar H, Carlson JE, Leebens-Mack JH, Schuster SC (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 35:1–10

    Google Scholar 

  • Gorman CF (1969) Hoabinhian: a pebble-tool complex with early plant associations in southeast Asia. Science 163:671–673

    Google Scholar 

  • Gorman CF (1972) Excavations at Spirit Cave, North Thailand: some interim interpretations. Asian Perspect 13:79–107

    Google Scholar 

  • Grillo O, Draper D, Venora G, Martínez-Laborde JB (2012) Seed image analysis and taxonomy of Diplotaxis DC. (Brassicaceae, Brassiceae). Syst Biodivers 10:57–70

    Google Scholar 

  • Grillo O, Mattana E, Venora G, Bacchetta G (2010) Statistical seed classifiers of 10 plant families representative of the Mediterranean vascular flora. Seed Sci Technol 38:455–476

    Google Scholar 

  • Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166:409–418

    Google Scholar 

  • Gyulai G, Waters L, Dane F (2008) Ancient cucurbit DNA-unlocking domestication events. Fublbright Year Book, Budapest

    Google Scholar 

  • Hâruta O (2011) Elliptic Fourier analysis of crown shapes in Quercus petraea trees. Ann. For Res 54:99–117

    Google Scholar 

  • Jacomet S, Kučan D, Ritter A, Suter G, Hagendorn A (2002) Punica granatum L (pomegranates) from early Roman context in Vindonissa (Switzerland). Veg Hist Archaeobot 11:79–92

    Google Scholar 

  • Jacquine P (1832) Monographie complète du melon. Roussellon, Paris

    Google Scholar 

  • Janick J, Paris HS, Parrish DC (2007) The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Ann Bot 100:1441–1457

    Google Scholar 

  • Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:233–247

    Google Scholar 

  • Jeffrey C (2005) A new system of Cucurbitaceae. Bot Zhurn 90:332–335

    Google Scholar 

  • Kajale MD (1988) Plant Economy. In: Dhavalikar MK, Sankalia HD, Ansari ZD (eds) Excavations at Inamgaon. Deccan College Postgraduate and Research Institute, Pune, pp 727–821

    Google Scholar 

  • Kajale MD (1996) Palaeobotanical investigations at Balathal: preliminary results. Man Environ 21:98–102

    Google Scholar 

  • Keimer L (1924) Die Gartenpflanzen in Alten Agypten, vol 1. Hoffmann und Campe Verlag, Hamburg

    Google Scholar 

  • Keng H (1974) Economic plants of ancient North China as mentioned in Shih Ching (Book of Poetry). Econ Bot 28:391–410

    Google Scholar 

  • Kerje T, Grum M (2000) The origin of melon, Cucumis melo: a review of the literature. Acta Hort 510:37–44

    Google Scholar 

  • Kirkbride JH (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, Boone

    Google Scholar 

  • Kistler L (2012) Ancient DNA extraction from plants. In: Shapiro B, Hofreiter M (eds) Methods in molecular biology: ancient DNA. Humana Press, New York, pp 71–79

    Google Scholar 

  • Körber-Grohne U (1994) Nutzpflanzen in Deutschland. Kulturgeschichte und Biologie. 3rd ed. Theiss, Stuttgart

  • Kroll H (1982) Kulturpflanzen von Tiryns. Archaeo Anz 1:467–485

    Google Scholar 

  • Kroll H (1983) Kastanas. Ausgrabungen in einem Siedlungshügel der Bronze- und Eisenzeit Makedoniens 1975–1979. Die Pflanzenfunde. Prähistorische Archäologie in Südosteuropa 2. Volker Spiess, Berlin

  • Kroll H (1984) Bronze Age and Iron Age agriculture in Kastanas, Macedonia. In: van Zeist W, Casparie WA (eds) Plants and ancient man. Balkema, Boston, pp 243–247

    Google Scholar 

  • Kučan D (1995) Zur Ernährung und dem Gebrauch von Pflanzen im Heraion von Samos im 7. Jahrhundert v Chr JDAI 110:1–64

    Google Scholar 

  • Laghetti G, Accogli R, Hammer K (2008) Different cucumber melon (Cucumis melo L.) races cultivated in Salento (Italy). Genet Resour Crop Ev 55:619–623

    Google Scholar 

  • Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F et al (2015) Variability of candidate genes and genetic association for sugar accumulation and climacteric behavior in melon (Cucumis melo L). BMC Genet 16:28

    Google Scholar 

  • Li C, Lister DL, Li H, Xu Y, Cui Y et al (2011) Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J Archaeol Sci 38:115–119

    Google Scholar 

  • Li HL (1969) The vegetables of ancient China. Econ Bot 23:253–260

    Google Scholar 

  • Li HL (1970) The origin of cultivated plants in southeast Asia. Econ Bot 24:3–19

    Google Scholar 

  • Liu K, Muse SV (2005) Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Google Scholar 

  • Livarda A (2008) Introduction and dispersal of exotic food plants into Europe during the Roman and the Medieval periods. University of Leicester, Dissertation

    Google Scholar 

  • Livarda A (2011) Spicing up life in northwestern Europe: exotic food plant imports in the Roman and Medieval world. Veg Hist Archaeobot 20:143–164

    Google Scholar 

  • Lo Schiavo F (2003) Sardinia between East and West, interconnections in the Mediterranean. In: Stampolidis NC, Karageorghis V (eds) Sea routes, interconnections in the Mediterranean 16th-6th BC. University of Crete, Leventis Foundation, Athens, pp 15–34

    Google Scholar 

  • Lovicu G, Labra M, De Mattia F, Farci M, Bacchetta G, Orrù M (2011) Prime osservazioni sui vinaccioli rinvenuti negli scavi di Sa Osa. In: Mastino A, Spanu PG, Usai A, Zucca R (eds) Tharros Felix 4. Carocci Editore, Roma, pp 249–255

    Google Scholar 

  • Manen JF, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A (2003) Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 30:721–729

    Google Scholar 

  • Manniche L (1989) An ancient Egyptian herbal. University of Texas Press, Austin

    Google Scholar 

  • Marinval P (2000) Économie végétale à l’âge du Bronze final et à l’époque romaine en bord de Saône. In: Bonnamour L (ed) Archéologie des fleuves et des rivières. Errance, Paris, pp 48–52

  • Megaloudi F (2006) Plants and diet in Greece from Neolithic to Classical Period: the archaeobotanical remains. British Archaeological Reports International Series 1516. Archaeopress, Oxford

  • Mukherjee A, Roy SC, Bera SD, Jiang H-E, Li X, Li C-S et al (2008) Results of molecular analysis of an archaeological hemp (Cannabis sativa L.) DNA sample from North West China. Genet Resour Crop Evol 55:481–485

    Google Scholar 

  • Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14:43–44

    Google Scholar 

  • Murray MA (2000) Fruits, vegetables, pulses and condiments. In: Nicholson PT, Shaw I (eds) Ancient Egyptian materials and technology. Cambridge University Press, Cambridge, pp 609–655

    Google Scholar 

  • Murphy C, Thompson G, Fuller DQ (2013) Roman food refuse: urban archaeobotany in Pompeii, Regio VI, Insula 1. Veg Hist Archaeobot 22:409–419

    Google Scholar 

  • Naudin C (1859) Essais dune monographiedes espèces et des varieties du genre Cucumis. Ann Sci Nat Bot 11:5–87

    Google Scholar 

  • Nesbitt M, O’Hara S (2000) Irrigation agriculture in Central Asia: a long-term perspective from Turkmenistan. In: Barker G, Gibertson D (eds) The archaeology of drylands. Living at the margin. Routledge, London-New York, pp 103–122

    Google Scholar 

  • Nunes EWLP, Esteras C, Ricarte AO, Martínez EM, Gómez-Guillamón ML, Nunes GHS, Picó MB (2017) Brazilian melon landraces resistant to Podosphaera xanthii are unique germplasm resources. Ann Appl Biol 171:214–228

    Google Scholar 

  • Oliveira HR, Civáň P, Morales J, Rodríguez-Rodríguez A, Lister DL, Jones MK (2012) Ancient DNA in archaeological wheat grains: preservation conditions and the study of pre-Hispanic agriculture on the island of Gran Canaria (Spain). J Archaeol Sci 39:828–835

    Google Scholar 

  • Orlando L, Gilbert MTP, Willerslev E (2015) Applications of next-generation sequencing. Reconstructing ancient genomes and epigenomes. Nat Rev Genet 16:395–408

    Google Scholar 

  • Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G (2013a) Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Veg Hist Archaeobot 22:231–242

    Google Scholar 

  • Orrù M, Grillo O, Venora G, Bacchetta G (2013b) Computer vision as a method complementary to molecular analysis: grapevine cultivar seeds case study. C R Biol 335:602–615

    Google Scholar 

  • Pääbo S (1989) Ancient DNA; extraction, characterization, molecular cloning and enzymatic amplification. Proc Natl Acad Sci U S A 86:1939–1943

    Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Google Scholar 

  • Palmer SA, Smith O, Allaby RG (2012) The blossoming of plant archaeogenetics. Ann Anat 194:146–156

    Google Scholar 

  • Paris HS (2015) Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Veget Hist Archaeobot (2016 25:405–414

    Google Scholar 

  • Paris HS, Amar Z, Lev E (2012) Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Ann Bot 110:23–33

    Google Scholar 

  • Paris HS, Daunay MC, Janick J (2009) The Cucurbitaceae and Solanaceae illustrated in medieval manuscripts known as the Tacuinum Sanitatis. Ann Bot 103:1187–1205

    Google Scholar 

  • Paris HS, Janick J, Daunay MC (2011) Medieval herbal iconography and lexicography of Cucumis (cucumber and melon, Cucurbitaceae) in the Occident, 1300–1458. Ann Bot 108:471–484

    Google Scholar 

  • Paris HS, Nerson H (2003) Seed dimensions in the subspecies and cultivar-groups of Cucurbita pepo. Genet Resour Crop Ev 50:615–625

    Google Scholar 

  • Pazaras T (1981) Two early Christian tombs from the western cemetery of Thessaloniki. Makedonica 21:373–389

    Google Scholar 

  • Pepe C, Giardini M, Giraudi C, Masi A, Mazzini I, Sadori L (2013) Climate and landscape in marginal marine environments: the ancient Roman harbour of Portus (Rome, Italy). Quat In 303:73–81

    Google Scholar 

  • Pinna S, Grillo O, Mattana E, Cañadas E, Bacchetta G (2014) Inter- and intraspecific morphometric variability in Juniperus L. seeds (Cupressaceae). Syst Biodivers 12:211–223

    Google Scholar 

  • Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecific classification of cultivar of melon. Acta Hortic 510:29–36

    Google Scholar 

  • Pitrat M (2013) Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant. Biotech 30:273–278

    Google Scholar 

  • Pitrat M (2016) Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of Cucurbitaceae, plant genetics and genomics: crops and models. Springer International Publishing, New York, pp 1–36

    Google Scholar 

  • Pollmann B, Jacomet S, Schlumbaum A (2005) Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium, Switzerland. J Archaeol Sci 32:1471–1480

    Google Scholar 

  • Purugganan M, Fuller DQ (2011) Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65:171–183

    Google Scholar 

  • Renfrew JM (1985) Chapter 9. Preliminary report on the botanical remains. In: Kemp BJ (ed) Amarna Reports II. Occasional Papers 2. Egypt Exploration Society, London, pp 175–190

    Google Scholar 

  • Renner SS, Schaefer H, Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). Evol Biol 7:58

    Google Scholar 

  • Rinaldi R, Bandini Mazzanti M, Bosi G (2013) Archaeobotany in urban site: the case of Mutina. Annali di Botanica 3:217–230

    Google Scholar 

  • Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. BioTechniques 42:343–352

    Google Scholar 

  • Sabato D, Esteras C, Grillo O, Picó B, Bacchetta G (2015a) Seed morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Sci Hort 192:441–452

    Google Scholar 

  • Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G (2015b) Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosyst 149:205–215

    Google Scholar 

  • Sadori L, Allevato E, Bellini C, Bertacchi A, Boetto G, Di Pasquale G et al (2014) Archaeobotany in Italian ancient Roman harbours. Rev Palaeobot Palyno 218:217–230

    Google Scholar 

  • Sanseverino W, Hénaff E, Vives C, Pinosio S, Burgos-Paz W, Morgante M et al (2015) Transposon insertion, structural variations and SNPs contribute to the evolution of the melon genome. Mol Biol Evol. https://doi.org/10.1093/molbev/msv152

  • Schlumbaum A, Tensen M, Jaenicke-Després V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobot 17:233–244

    Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species from melon is from Australia. Proc Natl Ac Sci USA 107:14269–14273

    Google Scholar 

  • Serres-Giardi L, Dogimont C (2012) How microsatellite diversity helps to understand the domestication history of melon. In: Sari M, Solmaz I, Aras V (eds) Cucurbitaceae 2012, Proceedings of the Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Antalya (Turkey) October 15-18th, pp 254–263

    Google Scholar 

  • Smith RWA, Monroe C, Bolnick DA (2015) Detection of cytosine methylation in ancient DNA from five native American populations using bisulfite sequencing. PLoS One 10(5):e0125344. https://doi.org/10.1371/journal.pone.0125344

    Google Scholar 

  • Smykalova I, Grillo O, Bjelkova M, Hybl M, Venora G (2011) Morpho-colorimetric traits of Pisum seeds measured by an image analysis system. Seed Sci Technol 39:612–626

    Google Scholar 

  • Smykalova I, Grillo O, Bjelkova M, Pavelek M, Venora G (2013) Phenotypic evaluation of flax seeds by image analysis. Ind Crop Prod 47:232–238

    Google Scholar 

  • Soltani F, Akashi Y, Kashi A, Zamani Z, Mostofi Y, Kato K (2010) Characterization of Iranian melon landraces of Cucumis melo L. groups flexuosus and dudaim by analysis of morphological characters and random amplified polymorphic DNA. Breed Sci 60:34–45

    Google Scholar 

  • Speirs AK, McConnachie G, Lowe AJ (2009) Chloroplast DNA from 16th century waterlogged oak in marine environment: initial steps in sourcing the Mary rose timbers. In: Haslam M (ed) Archaeological science under a aicroscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy. ANU E Press, Camberra, pp 175–189

    Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–332

    Google Scholar 

  • Tanaka K, Akashi Y, Fukunaga K, Yamamoto T, Aierken Y, Nishida H et al (2013) Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome. Breed Sci 63:183–196

    Google Scholar 

  • Tanaka K, Stevens CJ, Iwasaki S, Akashi Y, Yamamoto E, Dung TP et al (2016) Seed size and chloroplast DNA of modern and ancient seeds explain the establishment of Japanese cultivated melon (Cucumis melo L.) by introduction and selection. Genet Resour Crop Ev 63:1237–1254

    Google Scholar 

  • Telford IRH, Sebastian P, Bruhl JJ, Renner SS (2011) Cucumis (Cucurbitaceae) in Australia and Eastern Malesia, including newly recognized species and the sister species to C. melo. Sys Bot 36:376–389

    Google Scholar 

  • Tengberg M (2003) Archaeobotany in the Oman Peninsula and the role of eastern Arabia in the spread of African crops. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields. Progress in African archaeobotany. Heinrich Barth Institut, Frankfurt, pp 229–237

    Google Scholar 

  • Ucchesu M, Orrù M, Grillo O, Venora G, Paglietti G, Ardu A, Bacchetta G (2016) Predictive method for correct identification of archaeological charred grape seeds: support for advances in knowledge of grape domestication process. PLoS One 11(2):e0149814

    Google Scholar 

  • Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G (2015) Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Veg Hist Archaeobot 24:587–600

    Google Scholar 

  • Ucchesu M, Peña-Chocarro L, Sabato D, Tanda G (2014) Bronze Age subsistence in Sardinia (Italy): cultivated plants and wild resources. Veg Hist Archaeobot 24:1–13

    Google Scholar 

  • Usai A (2011) L’insediamento prenuragico e nuragico di Sa Osa-Cabras (OR). Topografia e considerazioni generali. In: Mastino A, Spanu PG, Usai A, Zucca R (eds) Tharros Felix 4. Carocci Editore, Roma, pp 159–186

    Google Scholar 

  • van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

    Google Scholar 

  • van der Veen M, Tabinor H (2007) Food, fodder and fuel at Mons Porphyrites: the botanical evidence. In: Maxfield VA, Peacock DPS (eds) Survey and excavation at Mons Porphyrites 1994-1998. Volume 2: The Excavations. Egypt Exploration Society, London, pp 83–142

    Google Scholar 

  • van der Veen M (2001) Chapter 8. The botanical evidence. In: Maxfield VA, Peacock DPS (eds) Mons Claudianus. Survey and excavation 1987–1993. Vol 2. Excavations: Part 1. Fouilles IFAO, Paris, pp 174–222

  • van der Veen M (1996) The plant remains from Mons Claudianus, a Roman in the Eastern Desert of Egypt—an interim report quarry settlement. Veg Hist Archaeobot 5:137–141

    Google Scholar 

  • van Zeist W, Bottema S, van der Veen M (2001) Diet and vegetation at ancient Carthage: the archaeobotanical evidence. Groningen Institute of Archaeology, Groningen

    Google Scholar 

  • van Zeist W, Roller G, Fahmy AGED (2003a) An archaeobotanical study of Ma’adi, a Predynastic site in Lower Egypt. In: van Zeist W (ed) Reports on archaeobotanical studies in the Old World, Groningen University Press, Groningen, pp 167–207

  • van Zeist W, Roller G (1993) Plant remains from Maadi, a Predynastic site in Lower Egypt. Veg Hist Archaeobot 2:1–14

    Google Scholar 

  • van Zeist W, Waterbolk-van Rooijen W, Palfenier-Vegter RM, Jan de Roller G (2003b) Plant cultivation at Tell Hammam et-Turkman. In: van Zeist W (ed) Reports on archaeobotanical studies in the Old World. Groningen University press, Groningen, pp 61–114

    Google Scholar 

  • Venora G, Grillo O, Ravalli C, Cremonini R (2009) Identification of Italian landraces of beans (Phaseolus vulgaris L.) using an image analysis system. Sci Hort 121:410–418

    Google Scholar 

  • Venora G, Grillo O, Shahin MA, Symons SJ (2007) Identification of Sicilian landraces and Canadian cultivars of lentil by image analysis system. Food Res Int 40:161–166

    Google Scholar 

  • Wales N, Andersen K, Cappellini E, Ávila-Arcos MC, Gilbert MTP (2014) Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS One 9(1):e86827

    Google Scholar 

  • Walters TW (1989) Historical overview on domesticated plants in China with special emphasis on the Cucurbitaceae. Econ Bot 43:297–313

    Google Scholar 

  • Watson W (1969) Early cereal cultivation in China. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Gerald Duckworth and Co, London, pp 397–402

    Google Scholar 

  • Wayne RK, Leonard JA, Cooper A (1999) Full of sound and fury: the recent history of ancient DNA. Ann Rev Ecol Syst 30:457–477

    Google Scholar 

  • Weber SA (1991) Plants and Harappan subsistence. An example of stability and change from Rojd. Oxford and IBH, New Delhi

    Google Scholar 

  • Wiethold J (2003) How to trace “romanisation” of central Gaule by archaeobotanical analysis?—some considerationes on new archaeobotanical results from Fance Centre-Est. In: Favory VA (ed) Actualité de la recherche en histoire et archéologie agraires. Actes du colloque international AGER 5, septembre 2000. Presses Universitaires Franc-Comtoises, Besançon, pp 269–282

    Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc Biol Sci 272(1558):3–16

    Google Scholar 

  • Yacoub M (1995) Splendeurs des mosaïques de Tunisie. Agence Nationale du Patrimoine, Tunis

    Google Scholar 

  • Yildiz M, Ekbic E, Keles D, Sensoy S, Abak K (2011) Use of ISSR, SRAP, and RAPD markers to assess genetic diversity in Turkish melons. Sci Hort 130:349–353

    Google Scholar 

  • Yu YS (1977) Han. In: Chang KC (ed) Food in Chinese culture: anthropological and historical perspectives. Yale University Press, New Haven, pp 53–84

    Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World. The origin of cultivated plants in West Asia, Europe and the Mediterranean Basin. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the NPGS (National Plant Germplasm System) of the USDA (United States Department of Agriculture) for providing several accessions from their collections. We wish to acknowledge M. Pitrat, who, within the MELRIP project, provided some of the melon accessions used in this study. We would also like to thank G. Attene, who made most of the Sardinian landraces and their images available to us, and F. Mascia, who provided the AmITS10 accession. We thank E. Martínez and G. Perpiñá Martín (COMAV) for their technical support with the melon collection.

We would like to express our gratitude to G. Venora for his support and for enabling us to use the laboratory at Stazione Consorziale Sperimentale di Granicoltura per la Sicilia.

Finally, we wish to thank E. Busó Sáez from the Epigenetic and Genotyping unit of the University of Valencia (Unitat Central d’Investigació en Medicina, University of Valencia) for his technical support. The language review of this paper was funded by the Universitat Politècnica de València, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianluigi Bacchetta or Belén Picó.

Electronic supplementary material

Online Resource 1

Seed lots detail. Code abbreviations: Ca = cantalupensis, In = inodorus, Am = ameri, Fx = flexuosus, Ch = chate, Du = dudaim, Co = conomon, Cn = chinensis, Mk = makuwa, Mo =momordica, Ct = chito, Ti = tibish, Ag = agrestis, La = indeterminate landraces. The third and fourth letter indicates the provenience according to ISO 3166-1 alpha-2 country code. (XLSX 31 kb)

Online Resource 2

SNP details: Information about the 123 SNP markers employed in the genotyping assay and summary statistic results generated in genotyping analysis with PowerMarker software. In Esteras et al. (2013) and Leida et al. (2015), markers were experimentally validated and further information is available. (XLSX 24 kb)

Online Resource 3

Genotyping results: Spreadsheet A Genotyping data of the entire melon collection. Spreadsheet B genotyping data expressed as s, a, m, and h for graphical genotype construction and related data such as percentages of heterozygosity or failed SNPs. Spreadsheet C Graphical genotypes obtained with GGT2 software for the entire collection ordered by the STRUCTURE population. Spreadsheet D Information about heterozygous loci for the archaeological sample. (XLSX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabato, D., Esteras, C., Grillo, O. et al. Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin. Archaeol Anthropol Sci 11, 789–810 (2019). https://doi.org/10.1007/s12520-017-0560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-017-0560-z

Keywords

Navigation