Skip to main content

Abstract

The genus Lolium consists of nine species, two of which are very important forage species, annual or Italian ryegrass (L. multiflorum) and perennial ryegrass (L. perenne), which is also an important turf species. The closely related L. temulentum has been proposed as a model species for genomic studies of cool-season forage and turf grasses due to its short life cycle (2–3 months and lack of vernalization requirement) as well as its inbreeding nature. Neotyphodium endophytes are associated with many Lolium species and often have a significant impact on adaptation, insect resistance, and animal health of forage. The wild relatives of Lolium are of importance as secondary resource for the improvement of L. multiflorum and L. perenne. They contain potentially valuable genetic traits, such as disease resistance, non-shattering habit, self-compatibility, larger seed size, and many other factors including endophytic diversity. In this chapter, we review the recent progress made with Lolium wild relatives and their use for molecular marker development, introgression of traits, studies on genetic diversity and endophytic fungi, and use in genetic transformation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldwin JC, Dombrowski JE (2006) Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci 171:459–469

    Article  CAS  Google Scholar 

  • Baldwin JC, Dombrowski JE, Martin RC, Banowetz GM (2007) Differentially expressed genes associated with post-harvest processing in Lolium temulentum L. Plant Sci 173:73–83

    Article  CAS  Google Scholar 

  • Balfourier F, Charmet G, Ravel C (1998) Genetic differentiation within and between natural populations of perennial and annual ryegrass (Lolium perenne and L. rigidum). Heredity 81:100–110

    Article  Google Scholar 

  • Balfourier F, Imbert C, Charmet G (2000) Evidence for phylogeographic structure in Lolium species related to the spread of agriculture in Europe. A cpDNA study. Theor Appl Genet 101:131–138

    Article  CAS  Google Scholar 

  • Broster JC, Pratley JE (2006) A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Aust J Exp Agric 46:1151–1160

    Article  CAS  Google Scholar 

  • Charmet G, Balfourier F, Chatard V (1996) Taxonomic relationships and interspecific hybridization in the genus Lolium (grasses). Genet Resour Crop Evol 43:319–327

    Article  Google Scholar 

  • Charmet G, Ravel C, Balfourier F (1997) Phylogenetic analysis in the Festuca–Lolium complex using molecular markers and ITS rDNA. Theor Appl Genet 94:1038–1046

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum. Grasses of the world. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Cornish MA, Hayward MD, Lawrence MJ (1979) Self incompatibility in ryegrass. I. Genetic control in diploid Lolium perenne L. Heredity 43:95–106

    Article  Google Scholar 

  • Dalton SJ, Bettany AJE, Timms E, Morris P (1999) Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Rep 18:721–726

    Article  CAS  Google Scholar 

  • Darbyshire SJ (1993) Realignment of Festuca subgenus Schedonorus with the genus Lolium (Poaceae). Novon 3:239–243

    Article  Google Scholar 

  • Dombrowski JE, Martin RC (2009) Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci 176:390–396

    Article  CAS  Google Scholar 

  • Dombrowski JE, Baldwin JC, Martin RC (2008) Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol 165:651–661

    Article  CAS  PubMed  Google Scholar 

  • Easton HS (2006) Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154:295–306

    Article  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MA (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  CAS  PubMed  Google Scholar 

  • Evans GM, Rees H, Snell CL, Sun S (1972) The relationship between nuclear DNA amount and the duration of the mitotic cycle. Chromosomes Today 3:24–31

    CAS  Google Scholar 

  • Evans LT, King RW, Chu A, Mander LN, Pharis RP (1990) Gibberellin structure and florigenic activity in Lolium temulentum, a long-day plant. Planta 182:97–106

    Article  CAS  Google Scholar 

  • Farrar K, Asp T, Lübberstedt T, Xu M, Thomas AM, Christiansen C, Humphreys MO, Donnison IS (2007) Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality. Mol Breed 19:15–23

    Article  CAS  Google Scholar 

  • Fujimori M, Hayashi K, Hirata M, Ikeda S, Takahashi Y, Mano Y, Sato H, Takamizo T, Mizuno K, Fujiwara T, Sugita S (2004) Molecular breeding and functional genomics for tolerance to biotic stress. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer, Dordrecht, pp 21–36

    Chapter  Google Scholar 

  • Gallagher JA, Pollock CJ (1998) Isolation and characterization of a cDNA clone from Lolium temulentum L. encoding for a sucrose hydrolytic enzyme which shows alkaline/neutral invertase activity. J Exp Bot 49:789–795

    Article  CAS  Google Scholar 

  • Gallagher JA, Cairns AJ, Pollock CJ (2004) Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. J Exp Bot 55:557–569

    Article  CAS  PubMed  Google Scholar 

  • Gay AP, Thomas H (1995) Leaf development in Lolium temulentum L. – photosynthesis in relation to growth and senescence. New Phytol 130:159–168

    Article  Google Scholar 

  • Ge Y, Cheng X, Hopkins A, Wang ZY (2007) Generation of transgenic Lolium temulentum plants by Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 26:783–789

    Article  CAS  PubMed  Google Scholar 

  • Gocal GFW, Poole AT, Gubler F, Watts RJ, Blundell C, King RW (1999) Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol 119:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes: analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801

    Article  CAS  PubMed  Google Scholar 

  • Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:270–279

    Article  CAS  PubMed  Google Scholar 

  • Humphreys MW, Canter PJ, Thomas HM (2003) Advances in introgression technologies for precision breeding within the Lolium: Festuca complex. Ann Appl Biol 143:1–10

    Article  CAS  Google Scholar 

  • Hutchinson J, Rees H, Seal AG (1979) Assay of the activity of supplementary DNA in Lolium. Heredity 43:411–421

    Article  CAS  Google Scholar 

  • Ikeda S, Takahashi W, Oishi M (2004) Generation of expressed sequence tags from cDNA libraries of Italian ryegrass (Lolium multiflorum Lam.). Grassl Sci 49:593–598

    Google Scholar 

  • Inoue M, Gao Z, Hirata M, Fujimori M, Cai H (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP (1993) Cytogenetics of the Festuca–Lolium complex. Relevance to breeding. In: Frankel R, Grossman M, Linskens HF, Maliga P, Riley R (eds) Monographs on theoretical and applied genetics, vol 18. Springer, Berlin, pp 12–19

    Google Scholar 

  • Jenkin TJ (1935) Interspecific and intergeneric hybrids in herbage grasses. II. Lolium perenne × L. temulentum. J Genet 31:379–412

    Article  Google Scholar 

  • Jenkin TJ (1954) Interspecific and intergeneric hybrids in herbage grasses. II. Lolium perenne with other Lolium species. J Genet 52:300–317

    Article  Google Scholar 

  • Jones ES, Dupal MP, Kolliler R, Drayton MC, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  • Jones E, Dupal M, Dumsday J, Hughes L, Forster J (2002) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  PubMed  Google Scholar 

  • King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127:624–632

    Article  CAS  PubMed  Google Scholar 

  • King RW, Mander LN, Asp T, MacMillan CP, Blundell CA, Evans LT (2008) Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol Plant 1(2):295–307

    Article  CAS  PubMed  Google Scholar 

  • Kirigwi FM, Zwonitzer JC, Rouf Mian MA, Wang ZY, Saha MC (2008) Microsatellite markers and genetic diversity assessment in Lolium temulentum. Genet Resour Crop Evol 55:105–114

    Article  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    CAS  PubMed  Google Scholar 

  • McGrath S, Hodkinson TR, Barth S (2007) Extremely high cytoplasmic diversity in natural and breeding populations of Lolium (Poaceae). Heredity 99:531–544

    Article  CAS  PubMed  Google Scholar 

  • Mian MA, Saha MC, Hopkins AA, Wang ZY (2005) Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48:637–647

    Article  CAS  PubMed  Google Scholar 

  • Moon CD, Scott B, Schardl CL, Christensen MJ (2000) The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 92:1103–1118

    Article  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Naylor B (1960) Species differentiation in the genus Lolium. Heredity 15:219–233

    Article  Google Scholar 

  • Rees H, Jones GH (1967) Chromosome evolution in Lolium. Heredity 22:1–18

    Article  Google Scholar 

  • Saha MC, Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP- based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110(2):323–336

    Article  CAS  PubMed  Google Scholar 

  • Sawbridge T, Ong EK, Binnion C, Emmerling M, McInnes R, Meath K, Nguyen N, Nunan K, O'Neill M, O'Toole F, Rhodes C, Simmonds J, Tian P, Wearne K, Webster T, Winkworth A, Spangenberg G (2003) Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.). Plant Sci 165:1089–1100

    Article  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbiosis of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Scholz H, Stierstorfer CH, Gaisberg MV (2000) Lolium edwardii sp. Nova (Gramineae) and its relationship with Schedonorus sect. Plantynia DUMORT. Feddes Repert 111:561–565

    Article  Google Scholar 

  • Senda T, Kubo N, Hirai M, Tominaga T (2003) Development of microsatellite markers and their effectiveness in Lolium temulentum. Weed Res 44:136–141

    Article  Google Scholar 

  • Senda T, Saito M, Ohsako T, Tominaga T (2004) Analysis of Lolium temulentum geographical differentiation by microsatellite and AFLP markers. Weed Res 45:18–25

    Article  Google Scholar 

  • Senda T, Hiraoka Y, Tominaga T (2006) Inheritance of seed shattering in Lolium temulentum and L. persicum hybrids. Genet Resour Crop Evol 53:449–451

    Article  Google Scholar 

  • Sharifi Tehrani M, Mardi M, Saeidi H, Gharehyazi B, Assadi M (2008) Transferability of genomic and EST-microsatellites from Festuca arundinacea Schreb. to Lolium persicum Boiss. and Hohen. ex Boiss. Int J Bot 4(4):476–480

    Article  Google Scholar 

  • Soreng RJ, Terrell EE (1997) Taxonomic notes on Schedonorus, a segregate genus from Festuca or Lolium, with a new Nothogenus x Schedololium, and new combinations. Phytologia 83:85–88

    Google Scholar 

  • Stewart AV (2004) The Canary Islands endophytes of Lolium – a clarification. 5th international symposium on Neotyphodium/Grass interactions, May 23–26, Layfayette, Arkansas, USA

    Google Scholar 

  • Stynes BA, Bird AF (1993) Development of annual ryegrass toxicity. Aust J Agric Res 34:653–660

    Article  Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656

    Article  CAS  PubMed  Google Scholar 

  • Terrell EE (1966) Taxonomic implications of genetics in ryegrasses (Lolium). Bot Rev 32:138–164

    Article  Google Scholar 

  • Terrell EE (1968) A taxonomic revision of the genus Lolium. USDA Tech Bull 1392:65

    Google Scholar 

  • Thomas HM (1981) The giemsa C-band karyotypes of six Lolium species. Heredity 46:263–267

    Article  CAS  Google Scholar 

  • Thomas H, Morgan WG, Thomas AM, Ougham HJ (1999) Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis. Theor Appl Genet 99:92–99

    Article  Google Scholar 

  • Thorogood D, Hayward MD (1992) Self-compatibility in Lolium temulentum L.: its genetic control and transfer into L. perenne L. and L. multiflorum Lam. Heredity 68:71–78

    Article  Google Scholar 

  • Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Wang Z-Y, Scott M, Hopkins A (2002) Plant regeneration from embryogenic cell suspension cultures of Lolium temulentum. In Vitro Cell Dev Biol Plant 38:446–450

    Article  Google Scholar 

  • Wang ML, Gillespie AG, Newman ML, Dean RE, Pittman RN, Morris JB, Pederson GA (2004) Transfer of simple sequence repeat (SSR) markers across the legume family for germplasm characterization and evaluation. Plant Genet Res 2:107–119

    Article  CAS  Google Scholar 

  • Wang ML, Barkley NA, Yu J-K, Dean RE, Newman ML, Sorrells ME, Pederson GA (2005a) Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour 3:45–57

    Article  CAS  Google Scholar 

  • Wang Z-Y, Ge Y, Mian R, Baker J (2005b) Development of highly tissue culture responsive lines of Lolium temulentum by anther culture. Plant Sci 168:203–211

    Article  CAS  Google Scholar 

  • Wit F (1974) Cytoplasmic male sterility in ryegrasses (Lolium spp.) detected after intergeneric hybridization. Euphytica 23:31–38

    Article  Google Scholar 

  • Yamada T (2001) Introduction of a self-compatible gene of Lolium temulentum L. to perennial ryegrass (Lolium perenne L.) for the purpose of the production of inbred lines of perennial ryegrass. Euphytica 122:213–217

    Article  Google Scholar 

  • Yamada T, Forster JW, Humphreys MW, Takamizo T (2005) Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassl Sci 51:89–106

    Article  CAS  Google Scholar 

  • Yu Q, Han H, Nguyen L, Forster JW, Powles SB (2009) Paraquat resistance in a Lolium rigidum population is governed by one major nuclear gene. Theor Appl Genet. doi:10.1007/s00122-009-1008-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cai, H., Stewart, A., Inoue, M., Yuyama, N., Hirata, M. (2011). Lolium . In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14255-0_10

Download citation

Publish with us

Policies and ethics