Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis

Abstract

Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of Neisseria meningitidis transmission, carriage state, invasion and virulence factors of the meningococcal outer membrane.
Fig. 2: Phylogenetic network of the relationships between species in the genus Neisseria.
Fig. 3: Phylogenetic networks of Neisseria meningitidis at different resolutions.
Fig. 4: Restriction-modification systems in Neisseria meningitidis.
Fig. 5: Overview of the pan-genome content of 11 closed genomes of Neisseria meningitidis.

Similar content being viewed by others

References

  1. Christensen, H., May, M., Bowen, L., Hickman, M. & Trotter, C. L. Meningococcal carriage by age: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 853–861 (2010).

    PubMed  Google Scholar 

  2. Cimolai, N. & Caugant D. A. in Laboratory Diagnosis of Bacterial Infections (ed. Cimolai N.) 499–525 (Marcel Dekker, 2001).

  3. Gotschlich, E. C., Goldschneider, I. & Artenstein, M. S. Human immunity to the meningococcus. IV. Immunogenicity of group A and group C meningococcal polysaccharides in human volunteers. J. Exp. Med. 129, 1367–1384 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Artenstein, M. S. et al. Prevention of meningococcal disease by group C polysaccharide vaccines. N. Engl. J. Med. 282, 417–420 (1970).

    CAS  PubMed  Google Scholar 

  5. Jafri, R. Z. et al. Global epidemiology of invasive meningococcal disease. Popul. Health Metr. 11, 17 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Wang, B., Santoreneos, R., Giles, L., Haji Ali Afzali, H. & Marshall, H. Case fatality rates of invasive meningococcal disease by serogroup and age: a systematic review and meta-analysis. Vaccine 37, 2768–2782 (2019).

    PubMed  Google Scholar 

  7. Stephens, D. S., Greenwood, B. & Brandtzaeg, P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369, 2196–2210 (2007).

    PubMed  Google Scholar 

  8. Vyse, A., Anonychuk, A., Jäkel, A., Wieffer, H. & Nadel, S. The burden and impact of severe and long-term sequelae of meningococcal disease. Expert Rev. Anti Infect. Ther. 11, 597–604 (2013).

    CAS  PubMed  Google Scholar 

  9. Jyssum, K. & Jyssum, S. Variation in density and transformation potential in deoxyribonucleic acid from Neisseria meningitidis. J. Bacteriol. 90, 1513–1519 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Feil, E. J., Maiden, M. C., Achtman, M. & Spratt, B. G. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol. Biol. Evol. 16, 1496–1502 (1999).

    CAS  PubMed  Google Scholar 

  11. Vogel, U. & Frosch, M. The genus Neisseria: population structure, genome plasticity, and evolution of pathogenicity. Curr. Top. Microbiol. Immunol. 264, 23–45 (2002).

    CAS  PubMed  Google Scholar 

  12. Liu, G., Tang, C. M. & Exley, R. M. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161, 1297–1312 (2015).

    CAS  PubMed  Google Scholar 

  13. Linz, B., Schenker, M., Zhu, P. & Achtman, M. Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis. Mol. Microbiol. 36, 1049–1058 (2000).

    CAS  PubMed  Google Scholar 

  14. Lu, Q. F. et al. Genus-wide comparative genomics analysis of Neisseria to identify new genes associated with pathogenicity and niche adaptation of Neisseria pathogens. Int. J. Genomics 2019, 6015730 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Bennett, J. S., Watkins, E. R., Jolley, K. A., Harrison, O. B. & Maiden, M. C. Identifying Neisseria species by use of the 50S ribosomal protein L6 (rplF) gene. J. Clin. Microbiol. 52, 1375–1381 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Maiden, M. C. & Harrison, O. B. Population and functional genomics of Neisseria revealed with gene-by-gene approaches. J. Clin. Microbiol. 54, 1949–1955 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).

    CAS  PubMed  Google Scholar 

  18. Eerkens, J. W. et al. A probable prehistoric case of meningococcal disease from San Francisco Bay: next generation sequencing of Neisseria meningitidis from dental calculus and osteological evidence. Int. J. Paleopathol. 22, 173–180 (2018).

    PubMed  Google Scholar 

  19. Schoen, C. et al. Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc. Natl Acad. Sci. USA 105, 3473–3478 (2008).

    CAS  PubMed  Google Scholar 

  20. Schielke, S., Frosch, M. & Kurzai, O. Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae. Med. Microbiol. Immunol. 199, 185–196 (2010).

    CAS  PubMed  Google Scholar 

  21. Clemence, M. E. A., Maiden, M. C. J. & Harrison, O. B. Characterization of capsule genes in non-pathogenic Neisseria species. Microb. Genom. 4, e0.000208 (2018).

    Google Scholar 

  22. Lapeysonnie, L. La méningite cérébrospinale en Afrique. Bull. World Health Organ. 28, 1–114 (1963).

    Google Scholar 

  23. Greenwood, B. Manson Lecture. Meningococcal meningitis in Africa. Trans. R. Soc. Trop. Med. Hyg. 93, 341–353 (1999).

    CAS  PubMed  Google Scholar 

  24. Stephens, D. S. Conquering the meningococcus. FEMS Microbiol. Rev. 31, 3–14 (2007).

    CAS  PubMed  Google Scholar 

  25. Harrison, O. B. et al. Description and nomenclature of Neisseria meningitidis capsule locus. Emerg. Infect. Dis. 19, 566–573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tzeng, Y. L. & Stephens, D. S. Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect. 2, 687–700 (2000).

    CAS  PubMed  Google Scholar 

  27. Diomandé, F. V. Public health impact after the introduction of PsA-TT: the first 4 years. Clin. Infect. Dis. 61, S467–S472 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Borrow, R. et al. The Global Meningococcal Initiative: global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection. Expert Rev. Vaccines 16, 313–328 (2017).

    CAS  PubMed  Google Scholar 

  29. Krauland, M. G. et al. Whole genome sequencing to investigate the emergence of clonal complex 23 Neisseria meningitidis serogroup Y disease in the United States. PLOS ONE 7, e35699 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bröker, M. et al. Meningococcal serogroup Y disease in Europe: continuation of high importance in some European regions in 2013. Hum. Vaccin. Immunother. 11, 2281–2286 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Mayer, L. W. et al. Outbreak of W135 meningococcal disease in 2000: not emergence of a new W135 strain but clonal expansion within the electophoretic type-37 complex. J. Infect. Dis. 185, 1596–1605 (2002).

    PubMed  Google Scholar 

  32. Koumaré, B. et al. The first large epidemic of meningococcal disease caused by serogroup W135, Burkina Faso, 2002. Vaccine 25, A37–A41 (2007).

    PubMed  Google Scholar 

  33. Abad, R., López, E. L., Debbag, R. & Vázquez, J. A. Serogroup W meningococcal disease: global spread and current affect on the Southern Cone in Latin America. Epidemiol. Infect. 142, 2461–2470 (2014).

    CAS  PubMed  Google Scholar 

  34. Krone, M. et al. Increase of invasive meningococcal serogroup W disease in Europe, 2013 to 2017. Euro Surveill. 24, e2807 (2019).

    Google Scholar 

  35. Caugant, D. A. et al. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc. Natl Acad. Sci. USA 83, 4927–4931 (1986).

    CAS  PubMed  Google Scholar 

  36. Olyhoek, T., Crowe, B. A. & Achtman, M. Clonal population structure of Neisseria meningitidis serogroup A isolated from epidemics and pandemics between 1915 and 1983. Rev. Infect. Dis. 9, 665–692 (1987).

    CAS  PubMed  Google Scholar 

  37. Maiden, M. C. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA 95, 3140–3145 (1998).

    CAS  PubMed  Google Scholar 

  38. Yazdankhah, S. P. et al. Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J. Clin. Microbiol. 42, 5146–5153 (2004).

    PubMed  PubMed Central  Google Scholar 

  39. Golparian, D. & Unemo, M. Will genome analysis elucidate evolution, global transmission and virulence of Neisseria meningitidis lineages? EBioMedicine 2, 186–187 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Lucidarme, J. et al. Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. J. Infect. 71, 544–552 (2015). This study demonstrates the power of whole genome sequencing to elucidate the global epidemiology of lineage 11.

    PubMed  PubMed Central  Google Scholar 

  41. Bratcher, H. B., Corton, C., Jolley, K. A., Parkhill, J. & Maiden, M. C. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genom. 15, 1138 (2014).

    Google Scholar 

  42. Topaz, N. et al. Phylogenetic relationships and regional spread of meningococcal strains in the meningitis belt, 2011–2016. EBioMedicine 41, 488–496 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Jelfs, J., Munro, R., Ashton, F. E. & Caugant, D. A. Genetic characterization of a new variant within the ET-37 complex of Neisseria meningitidis associated with outbreaks in various parts of the world. Epidemiol. Infect. 125, 285–298 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramsay, M. E., Andrews, N., Kaczmarski, E. B. & Miller, E. Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 357, 195–196 (2001).

    CAS  PubMed  Google Scholar 

  45. Retchless, A. C. et al. The establishment and diversification of epidemic-associated serogroup W meningococcus in the African meningitis belt, 1994–2012. mSphere 1, e00201–e00216 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Mustapha, M. M. et al. Genomic epidemiology of hypervirulent serogroup W, ST-11 Neisseria meningitidis. EBioMedicine 2, 1447–1455 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Mowlaboccus, S. et al. Clonal expansion of a new penicillin-resistant clade of Neisseria meningitidis serogroup W clonal complex 11, Australia. Emerg. Infect. Dis. 23, 1364–1367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lucidarme, J. An international invasive meningococcal disease outbreak due to a novel and rapidly expanding serogroup W strain, Scotland and Sweden, July to August 2015. Euro Surveill. 21, 30395 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Eriksson, L. et al. Whole-genome sequencing of emerging invasive Neisseria meningitidis serogroup W in Sweden. J. Clin. Microbiol. 56, e01409–e01417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Taha, M.-K., Deghmane, A. E., Knol, M. & van der Ende, A. Whole genome sequencing reveals Trans-European spread of an epidemic Neisseria meningitidis serogroup W clone. Clin. Microbiol. Infect. 25, 765–767 (2019).

    PubMed  Google Scholar 

  51. Campbell, H., et al. Presentation with gastrointestinal symptoms and high case fatality associated with group W meningococcal disease (MenW) in teenagers, England, July 2015 to January 2016. Euro Surveill. 21, 30175 (2016).

    Google Scholar 

  52. Tzeng, Y. L. et al. Emergence of a new Neisseria meningitidis clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proc. Natl Acad. Sci. USA 114, 4237–4242 (2017). An emerging strain of N. meningitidis causing urethritis in the United States adaptated to the urogenital environment by loss of the capsule and acquisition of the N. gonorrheae norB–aniA cassette promoting anaerobic growth.

    CAS  PubMed  Google Scholar 

  53. Kahler, C. M. Emergence of a urogenital pathotype of Neisseria meningitidis. Trends Microbiol. 25, 510–512 (2017).

    CAS  PubMed  Google Scholar 

  54. Retchless, A. C. et al. Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles. BMC Genom. 19, 176 (2018).

    Google Scholar 

  55. Moore, P. S., Reeves, M. W., Schwartz, B., Gellin, B. G. & Broome, C. V. Intercontinental spread of an epidemic group A Neisseria meningitidis strain. Lancet 2, 260–263 (1989).

    CAS  PubMed  Google Scholar 

  56. Morelli, G. et al. Clonal descent and microevolution of Neisseria meningitidis during 30 years of epidemic spread. Mol. Microbiol. 25, 1047–1064 (1997).

    CAS  PubMed  Google Scholar 

  57. Caugant, D. A. et al. Molecular characterization of invasive meningococcal isolates from countries in the African meningitis belt before introduction of a serogroup A conjugate vaccine. PLOS ONE 7, e46019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lamelas, A. et al. Emergence of a new epidemic Neisseria meningitidis serogroup A clone in the African meningitis belt: high-resolution picture of genomic changes that mediate immune evasion. mBio 5, e01974-14 (2014). A genomic study showing the evolutionary changes occurring during clonal replacement within a serogroup A lineage in the African meningitis belt and highlighting the role of protein glycosylation for immune evasion.

    PubMed  PubMed Central  Google Scholar 

  59. Watkins, E. R. & Maiden, M. C. Metabolic shift in the emergence of hyperinvasive pandemic meningococcal lineages. Sci. Rep. 7, 41126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Diermayer, M. et al. Epidemic serogroup B meningococcal disease in Oregon: the evolving epidemiology of the ET-5 strain. JAMA 281, 1493–1497 (1999).

    CAS  PubMed  Google Scholar 

  61. Rouaud, P. et al. Prolonged outbreak of B meningococcal disease in the Seine-Maritime department, France, January 2003 to June 2005. Euro Surveill. 11, 178–181 (2006).

    CAS  PubMed  Google Scholar 

  62. Harrison, O. B., Bray, J. E., Maiden, M. C. & Caugant, D. A. Genomic analysis of the evolution and global spread of hyper-invasive meningococcal lineage 5. EBioMedicine 2, 234–243 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Hill, D. M. et al. Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infect. Dis. 15, 1420–1428 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Bratcher, H. B. et al. Establishment of the European meningococcal strain collection genome library (EMSC-GL) for the 2011 to 2012 epidemiological year. Euro Surveill. 23 (2018).

  65. Brehony, C. et al. Distribution of Bexsero® antigen sequence types (BASTs) in invasive meningococcal disease isolates: implications for immunisation. Vaccine 34, 4690–4697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yazdankhah, S. P. & Caugant, D. A. Neisseria meningitidis: an overview of the carrier state. J. Med. Microbiol. 53, 821–832 (2004).

    PubMed  Google Scholar 

  67. Caugant, D. A., Tzanakaki, G. & Kriz, P. Lessons from meningococcal carriage studies. FEMS Microbiol. Rev. 31, 52–63 (2007).

    CAS  PubMed  Google Scholar 

  68. Jones, C. H. et al. Comparison of phenotypic and genotypic approaches to capsule typing of Neisseria meningitidis by use of invasive and carriage isolate collections. J. Clin. Microbiol. 54, 25–34 (2016).

    CAS  PubMed  Google Scholar 

  69. Tzeng, Y. L., Thomas, J. & Stephens, D. S. Regulation of capsule in Neisseria meningitidis. Crit. Rev. Microbiol. 42, 759–772 (2016).

    CAS  PubMed  Google Scholar 

  70. Ispasanie, E. et al. Spontaneous point mutations in the capsule synthesis locus leading to structural and functional changes of the capsule in serogroup A meningococcal populations. Virulence 9, 1138–1149 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Claus, H., Maiden, M. C., Maag, R., Frosch, M. & Vogel, U. Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology 148, 1813–1819 (2002).

    CAS  PubMed  Google Scholar 

  72. Ganesh, K. et al. Molecular characterization of invasive capsule null Neisseria meningitidis in South Africa. BMC Microbiol. 17, 40 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Neri, A. et al. Carriage meningococcal isolates with capsule null locus dominate among high school students in a non-endemic period, Italy, 2012–2013. Int. J. Med. Microbiol. 309, 182–188 (2019).

    PubMed  Google Scholar 

  74. Xu, Z., Zhu, B., Xu, L., Gao, Y. & Shao, Z. First case of Neisseria meningitidis capsule null locus infection in China. Infect. Dis. 47, 591–592 (2015).

    Google Scholar 

  75. Diallo, K. et al. Hierarchical genomic analysis of carried and invasive serogroup A Neisseria meningitidis during the 2011 epidemic in Chad. BMC Genom. 18, 398 (2017).

    Google Scholar 

  76. Ren, X. et al. Genomic, transcriptomic, and phenotypic analyses of Neisseria meningitidis isolates from disease patients and their household contacts. mSystems 2, e00127-17 (2017). A comparison of closely related disease- and carriage-associated meningococci using a combination of genetic and phenotypic tools to understand mechanisms associated with virulence.

    PubMed  PubMed Central  Google Scholar 

  77. Sevestre, J. et al. Differential expression of hemoglobin receptor, HmbR, between carriage and invasive isolates of Neisseria meningitidis contributes to virulence: lessons from a clonal outbreak. Virulence 9, 923–929 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Davidsen, T. & Tønjum, T. Meningococcal genome dynamics. Nat. Rev. Microbiol. 4, 11–22 (2006).

    CAS  PubMed  Google Scholar 

  79. Alfsnes, K. et al. A genomic view of experimental intraspecies and interspecies transformation of a rifampicin-resistance allele into Neisseria meningitidis. Microb. Genom. 4, e000222 (2018).

    PubMed Central  Google Scholar 

  80. Ambur, O. H., Frye, S. A. & Tønjum, T. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J. Bacteriol. 189, 2077–2085 (2007).

    CAS  PubMed  Google Scholar 

  81. Frye, S. A., Nilsen, M., Tønjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLOS Genet. 9, e1003458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lamelas, A. et al. Loss of genomic diversity in a Neisseria meningitidis clone through a colonization bottleneck. Genome Biol. Evol. 10, 2102–2109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maynard Smith, J., Smith, N. H., O'Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).

    Google Scholar 

  84. Tibayrenc, M. & Ayala, F. J. How clonal are Neisseria species? The epidemic clonality model revisited. Proc. Natl Acad. Sci. USA 112, 8909–8913 (2015).

    CAS  PubMed  Google Scholar 

  85. Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6, 431–440 (2008).

    CAS  PubMed  Google Scholar 

  86. Zhu, P. et al. Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc. Natl Acad. Sci. USA 98, 5234–5239 (2001).

    CAS  PubMed  Google Scholar 

  87. Siena, E. et al. In-silico prediction and deep-DNA sequencing validation indicate phase variation in 115 Neisseria meningitidis genes. BMC Genom. 17, 843 (2016).

    Google Scholar 

  88. Saunders, N. J. et al. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol. Microbiol. 37, 207–215 (2000).

    CAS  PubMed  Google Scholar 

  89. Wanford, J. J., Green, L. R., Aidley, J. & Bayliss, C. D. Phasome analysis of pathogenic and commensal Neisseria species expands the known repertoire of phase variable genes, and highlights common adaptive strategies. PLOS ONE 13, e0196675 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Srikhanta, Y. N., Maguire, T. L., Stacey, K. J., Grimmond, S. M. & Jennings, M. P. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc. Natl Acad. Sci. USA 102, 5547–5551 (2005).

    CAS  PubMed  Google Scholar 

  91. Bayliss, C. D. et al. Neisseria meningitidis escape from the bactericidal activity of a monoclonal antibody is mediated by phase variation of lgtG and enhanced by a mutator phenotype. Infect. Immun. 76, 5038–5048 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Green, L. R. et al. Phase variation of NadA in invasive Neisseria meningitidis isolates impacts on coverage estimates for 4C-MenB, a MenB vaccine. J. Clin. Microbiol. 56, e00204 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tauseef, I. et al. Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence. Microbiology 157, 1446–1456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lucidarme, J. et al. The distribution and ‘in vivo’ phase variation status of haemoglobin receptors in invasive meningococcal serogroup B disease: genotypic and phenotypic analysis. PLOS ONE 8, e76932 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lewis, L. A. et al. Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol. Microbiol. 32, 977–989 (1999).

    CAS  PubMed  Google Scholar 

  96. Richardson, A. R. & Stojiljkovic, I. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol. Microbiol. 40, 645–655 (2001).

    CAS  PubMed  Google Scholar 

  97. Martin, P., Sun, L., Hood, D. W. & Moxon, E. R. Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. Microbiology 150, 3001–3012 (2004).

    CAS  PubMed  Google Scholar 

  98. Green, L. R. et al. Potentiation of phase variation in multiple outer membrane proteins during spread of the hyperinvasive Neisseria meningitidis serogroup W ST-11 lineage. J. Infect. Dis. 220, 1109–1117 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Bickle, T. A. & Krüger, D. H. Biology of DNA restriction. Microbiol. Rev. 57, 434–450 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Atack, J. M., Yang, Y., Seib, K. L., Zhou, Y. & Jennings, M. P. A survey of type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions. Nucleic Acids Res. 46, 3532–3542 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Seib, K. L., Jen, F. E., Scott, A. L., Tan, A. & Jennings, M. P. Phase variation of DNA methyltransferases and the regulation of virulence and immune evasion in the pathogenic Neisseria. Pathog. Dis. 75, ftx080 (2017). A review describing the importance of epigenetic changes mediated by phase variable DNA methlytransferases in the pathogenic Neisseria species.

    Google Scholar 

  102. Srikhanta, Y. N., Fox, K. L. & Jennings, M. P. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat. Rev. Microbiol. 8, 196–206 (2010).

    CAS  PubMed  Google Scholar 

  103. Phillips, Z. N., Husna, A. U., Jennings, M. P., Seib, K. L. & Atack, J. M. Phasevarions of bacterial pathogens - phase-variable epigenetic regulators evolving from restriction-modification systems. Microbiology 165, 917–928 (2019).

    CAS  PubMed  Google Scholar 

  104. Tan, A. et al. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci. Rep. 6, 21015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Srikhanta, Y. N. et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLOS Pathog. 5, e1000400 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Jen, F. E., Seib, K. L. & Jennings, M. P. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob. Agents Chemother. 58, 4219–4221 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Seib, K. L. et al. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res. 43, 4150–4162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhat, A. H., Maity, S., Giri, K. & Ambatipudi, K. Protein glycosylation: sweet or bitter for bacterial pathogens? Crit. Rev. Microbiol. 45, 82–102 (2019).

    CAS  PubMed  Google Scholar 

  109. Børud, B. et al. Extended glycan diversity in a bacterial protein glycosylation system linked to allelic polymorphisms and minimal genetic alterations in a glycosyltransferase gene. Mol. Microbiol. 94, 688–699 (2014).

    PubMed  Google Scholar 

  110. Gault, J. et al. Neisseria meningitidis type IV pili composed of sequence invariable pilins are masked by multisite glycosylation. PLOS Pathog. 11, e1005162 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Mubaiwa, T. D., et al. The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease. Pathog. Dis. 75, ftx063 (2017).

    PubMed Central  Google Scholar 

  112. Børud, B. et al. Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proc. Natl Acad. Sci. USA 108, 9643–9648 (2011).

    PubMed  Google Scholar 

  113. Børud, B., Bårnes, G. K., Brynildsrud, O. B., Fritzsønn, E. & Caugant, D. A. Genotypic and phenotypic characterization of the O-linked protein glycosylation system reveals high glycan diversity in paired meningococcal carriage isolates. J. Bacteriol. 200, e00794–17 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Klughammer, J. et al. Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease. PLOS ONE 12, e0169892 (2017). An ultra-deep sequencing analysis of throat-blood strain pairs isolated from four patients detected mutations affecting predominantly contingency genes involved in type IV pilus biogenesis.

    PubMed  PubMed Central  Google Scholar 

  116. Lees, J. A. et al. Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis. Microb. Genom. 3, e000103 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Omer, H. et al. Genotypic and phenotypic modifications of Neisseria meningitidis after an accidental human passage. PLOS ONE 6, e17145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Alamro, M. et al. Phase variation mediates reductions in expression of surface proteins during persistent meningococcal carriage. Infect. Immun. 82, 2472–2484 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Bårnes, G. K. et al. Whole genome sequencing reveals within-host genetic changes in paired meningococcal carriage isolates from Ethiopia. BMC Genom. 18, 407 (2017).

    Google Scholar 

  120. Bille, E. et al. A chromosomally integrated bacteriophage in invasive meningococci. J. Exp. Med. 201, 1905–1913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bille, E. et al. Association of a bacteriophage with meningococcal disease in young adults. PLOS ONE 3, e3885 (2008).

    PubMed  PubMed Central  Google Scholar 

  122. Siena, E., Bodini, M. & Medini, D. Interplay between virulence and variability factors as a potential driver of invasive meningococcal disease. Comput. Struct. Biotechnol. J. 16, 61–69 (2018). This article supports the hypothesis that invasive meningococcal disease arises from the ability of the bacterium to develop phenotypic variants through stochastic assortment of a repertoire of virulence factors.

    PubMed  PubMed Central  Google Scholar 

  123. Schoen, C., Kischkies, L., Elias, J. & Ampattu, B. J. Metabolism and virulence in Neisseria meningitidis. Front. Cell. Infect. Microbiol. 4, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. Müller, M. G., Ing, J. Y., Cheng, M. K. W., Flitter, B. A. & Moe, G. R. Identification of a phage encoded Ig-binding protein from invasive Neisseria meningitidis. J. Immunol. 191, 3287–3296 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Brynildsrud, O. B. et al. Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa. Proc. Natl Acad. Sci. USA 115, 5510–5515 (2018). A study showing how acquisition of a few virulence genes by a benign meningococcal carrier strain can have major public health consequences.

    CAS  PubMed  Google Scholar 

  126. Dull, P. M. & McIntosh, E. D. Meningococcal vaccine development – from glycoconjugates against MenACWY to proteins against MenB – potential for broad protection against meningococcal disease. Vaccine 30, B18–B25 (2012).

    CAS  PubMed  Google Scholar 

  127. Vella, M. & Pace, D. Glycoconjugate vaccines: an update. Expert Opin. Biol. Ther. 15, 529–546 (2015).

    CAS  PubMed  Google Scholar 

  128. Chen, W. H. et al. Safety and immunogenicity of a pentavalent meningococcal conjugate vaccine containing serogroups A, C, Y, W, and X in healthy adults: a phase 1, single-centre, double-blind, randomised, controlled study. Lancet Infect. Dis. 18, 1088–1096 (2018).

    CAS  PubMed  Google Scholar 

  129. Christodoulides, M. & Heckels, J. Novel approaches to Neisseria meningitidis vaccine design. Pathog. Dis. 75, ftx033 (2017).

    Google Scholar 

  130. Sette, A. & Rappuoli, R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33, 530–541 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rappuoli, R., Pizza, M., Masignani, V. & Vadivelu, K. Meningococcal B vaccine (4CMenB): the journey from research to real world experience. Expert Rev. Vaccines 17, 1111–1121 (2018).

    CAS  PubMed  Google Scholar 

  132. Murphy, E. et al. Sequence diversity of the factor H binding protein vaccine candidate in epidemiologically relevant strains of serogroup B Neisseria meningitidis. J. Infect. Dis. 200, 379–389 (2009).

    CAS  PubMed  Google Scholar 

  133. Perez, J. L. et al. From research to licensure and beyond: clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine. Expert Rev. Vaccines 17, 461–477 (2018).

    CAS  PubMed  Google Scholar 

  134. Hoiseth, S. K. et al. A multi-country evaluation of Neisseria meningitidis serogroup B factor H-binding proteins and implications for vaccine coverage in different age groups. Pediatr. Infect. Dis. J. 32, 1096–1101 (2013).

    PubMed  Google Scholar 

  135. Rodrigues, C. M. C. et al. Genomic surveillance of 4CMenB vaccine antigenic variants among disease-causing Neisseria meningitidis isolates, United Kingdom, 2010–2016. Emerg. Infect. Dis. 24, 673–682 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Murray, E. G. D. Meningococcus infection of the male urogenital tract and the liability to confusuion with gonococcus infection. Urol. Cutan. Rev. 43, 739–741 (1939).

    Google Scholar 

  137. Givan, K. F., Thomas, B. W. & Johnston, A. G. Isolation of Neisseria meningitidis from the urethra, cervix, and anal canal: further observations. Br. J. Vener. Dis. 53, 109–112 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Urra, E. et al. Orogenital transmission of Neisseria meningitidis serogroup C confirmed by genotyping techniques. Eur. J. Clin. Microbiol. Infect. Dis. 24, 51–53 (2005).

    CAS  PubMed  Google Scholar 

  139. Ito, S. et al. Male non-gonococcal urethritis: from microbiological etiologies to demographic and clinical features. Int. J. Urol. 23, 325–331 (2016).

    PubMed  Google Scholar 

  140. Bazan, J. A. et al. Large cluster of Neisseria meningitidis urethritis in Columbus, Ohio, 2015. Clin. Infect. Dis. 65, 92–99 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Toh, E. et al. Neisseria meningitidis ST11 complex isolates associated with nongonococcal urethritis, Indiana, USA, 2015–2016. Emerg. Infect. Dis. 23, 336–339 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Ma, K. C. et al. Genomic characterization of urethritis-associated Neisseria meningitidis shows that a wide range of N. meningitidis strains can cause urethritis. J. Clin. Microbiol. 55, 3374–3383 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Taha, M. K. et al. Evolutionary events associated with an outbreak of meningococcal disease in men who have sex with men. PLOS ONE 11, e0154047 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Genders, R. E., Spitaels, D., Jansen, C. L., van den Akker, T. W. & Quint, K. D. A misleading urethral smear with polymorphonuclear leucocytes and intracellular diplococci; case report of urethritis caused by Neisseria meningitidis. J. Med. Microbiol. 62, 1905–1906 (2013).

    CAS  PubMed  Google Scholar 

  145. Tzeng, Y. L. et al. Heteroresistance to the model antimicrobial peptide polymyxin B in the emerging Neisseria meningitidis lineage 11.2 urethritis clade: mutations in the pilMNOPQ operon. Mol. Microbiol. 111, 254–268 (2019).

    CAS  PubMed  Google Scholar 

  146. Hill, D. J., Griffiths, N. J., Borodina, E. & Virji, M. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clin. Sci. 118, 547–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Massari, P. et al. Cutting edge: immune stimulation by neisserial porins is Toll-like receptor 2 and MyD88 dependent. J. Immunol. 168, 1533–1537 (2002).

    CAS  PubMed  Google Scholar 

  148. Woodhams, K. L., Chan, J. M., Lenz, J. D., Hackett, K. T. & Dillard, J. P. Peptidoglycan fragment release from Neisseria meningitidis. Infect. Immun. 81, 3490–3498 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bennett, J. S. et al. A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158, 1570–1580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Katoh, K. & Standley, M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bryant, D. & Moulton, V. Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21, 255–265 (2004).

    CAS  PubMed  Google Scholar 

  152. Huson, D. H. & Bryant, D. User manual for SplitsTree4 V4. 13.1. (2010).

  153. Budroni, S. et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc. Natl Acad. Sci. USA 108, 4494–4499 (2011).

    CAS  PubMed  Google Scholar 

  154. Claus, H. et al. Genetic analysis of meningococci carried by children and young adults. J. Infect. Dis. 191, 1263–1271 (2005).

    PubMed  Google Scholar 

  155. Bentley, S. D. et al. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLOS Genet. 3, e23 (2007).

    PubMed  PubMed Central  Google Scholar 

  156. Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506 (2000).

    CAS  PubMed  Google Scholar 

  157. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Dominique A. Caugant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks C. D. Bayliss, D. S. Stephens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NeisseriaPubMLST database: https://pubmlst.org/neisseria/

Glossary

Meninges

The membranes surrounding the brain and spinal cord.

Fulminant

Coming on suddenly and with great severity.

Core genome

The set of genes that are present in all (or nearly all) strains of a species or population.

Dental calculus

A form of hardened dental plaque that is caused by precipitation of minerals from saliva and gingival fluid on the teeth.

Multilocus enzyme electrophoresis

A method for characterizing organisms by the relative mobilities under electrophoresis of a large number of intracellular enzymes.

Multilocus sequence typing

A procedure to characterize microbial isolates using the DNA sequences of internal fragments of multiple housekeeping genes.

DNA uptake sequences

Small repeated sequences that are required for DNA binding or uptake in natural transformation in members of the genus Neisseria.

Pan-genome

The sum of genes that are found in at least one strain of a species or population. In addition to the core genome, this includes the accessory genome, which contains dispensable genes present in a subset of the strains.

Simple sequence repeats

DNA tracts in which a short base pair motif is repeated several times, which can be found within the open reading frame or within the promoter region of a gene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caugant, D.A., Brynildsrud, O.B. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 18, 84–96 (2020). https://doi.org/10.1038/s41579-019-0282-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0282-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology