Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Fig 1.

Naturally infected tomato plants.

(A-C) Symptomatic mosaic pattern on leaves of cluster tomato plants cv. Mose. (C) Narrowing leaves of cluster tomato plants. (D) Dried peduncles and calyces on cherry tomato plants cv. Shiran leading to fruit abscission. (E) Necrotic symptoms on pedicle, calyces and petioles cv. Ikram. (F) Typical fruit symptoms with yellow spots cv. Mose. (G-I) Variable symptoms of tomato fruits cv. Odelia. (G) The typical disease symptoms. (H) Symptoms of mixed infections by the abundant TSWV and the new tobamovirus isolate. (I) Unique symptoms of the new tobamovirus isolate found at a single location at Sde-Nitzan village.

More »

Fig 1 Expand

Fig 2.

Morphological and serological characterization of viral particles and coat protein.

(A) Electron micrograph illustration of viral particles. (B) Distribution of viral particle lengths as imaged by TEM showing average size of 235±123nm. (C) SDS-PAGE (15%) analysis of viral particles preparation followed by Coomassie brilliant blue staining depicting the CP at molecular mass of ~17.5 kDa. (D-E) Testing the specificity and the cross reactivity of the antisera raised against the new tobamovirus isolate. By Coomassie brilliant blue staining (D) in parallel to Western blot analysis (E). Purified virions (1), CP from infected tomato plants extract, cv. Ikram (2). An extract from healthy (non-infected) tomato leaves (3). Cross reactivity of the antisera with (4) extracted pepper leaves, cv. Maor infected with PMMoV, (5) extracted Nicotiana tabacum cv. Samsun infected with TMGMV and (6) extracted tobacco leaves cv. Samsun infected with TMV.

More »

Fig 2 Expand

Table 1.

A new tobamovirus isolate infects commercial tomato cultivars harboring Tm-22 resistance gene.

More »

Table 1 Expand

Table 2.

Partial host range analysis following sap-mechanical inoculation of the new tobamovirus isolate.

More »

Table 2 Expand

Fig 3.

Pepper plants harboring L1,3,4 hypersensitivity response (HR) to infection by the new tobamovirus isolate.

(A-D) Symptoms developed following sap-mechanical leaves inoculation showing (A) necrotic lesions; (B) yellowing; (C, D) dried apoptotic leaves. (E-G) HR symptoms developed following root inoculation demonstrating dried spots on stems leading to plant growth inhibition.

More »

Fig 3 Expand

Fig 4.

Schematic presentation of genome organization and sequencing strategy for retrieving the tobamovirus isolate genome sequence.

(A) Schematic diagram of genome organization showing the viral four predicted ORFs. The numbers at the borders of each ORF represent the nucleotide base position of the start and termination codons of each ORF. (B) Illumina NGS analysis of samples from the outbreak at Ohad village. Lines represent the Illumina NGS assembled contigs (AC-1 and AC-2), obtained via whole-genome assembly analysis using tobamoviruses as a reference and de novo analysis using Velvet [29]. (C) Selected reverse transcription amplification (RT)-PCR and primer sets used to map and validate the complete viral genome. Grey lines represent 5’ and 3’ RACE used to obtain both viral untranslated regions (UTRs). (D) The distribution of the obtained small RNA along the viral genome.

More »

Fig 4 Expand

Fig 5.

Rooted phylogenetic tree derived from the deduced amino acid sequences of the concatenated genes.

The Israeli isolate of tomato brown rugose fruit virus (TBRFV-IL; KT721735); the Jordanian isolate of TBRFV (KT383474) and of several other viruses belonging to the genus Tobamovirus: Tomato mottle mosaic virus isolate MX5 (ToMMV-MX5; KF477193), Tomato mosaic virus isolate 1–2 (ToMV1-2; DQ873692), Tobacco mosaic virus (TMV; X68110), Tobacco mosaic virus isolate AH4 (TMV-AH4; KU321698), Tobacco mosaic virus isolate Oh (TMV-Oh; FR878069), Rehmannia mosaic virus isolate Jap (ReMV-Jap; AB628188), Rehmannia mosaic virus isolate Hen (ReMV-Hen; EF375551) and two outgroups: Pepper mild mottle virus (PMMoV; KX063611) and Tobacco mild green mosaic virus isolate Jap (TMGMV-Jap; AB078435). Each polyprotein-encoding sequence was aligned using the MAFT software for sequence alignments [26]. The tree was constructed based on maximum likelihood using the PhyML3.0 software with 1,000 bootstrap replicates [27].

More »

Fig 5 Expand

Fig 6.

Monitoring the distribution of the new tobamovirus disease in tomatoes grown in greenhouses in Israel.

A1-A2, The outbreak incident of viral infection in greenhouses of Ohad village in September-October 2014. A1 Detailed picture of the infected area and surroundings. A2, The isolated occurrence of the disease depicted in Israel's map. B1-B2, Tomato disease spread as detected by the official Israeli PPIS survey on February 2015. B1, Detailed picture of the infected areas and surroundings. B2, Enlarged picture of the surroundings. C, The up to date disease status across the country in November 2016. Red dots represent positive detection of the virus tomato plants in the infected growing area. Blue dots represent negative detection of the virus in tomato plants.

More »

Fig 6 Expand