Skip to main content
Log in

Biological control of Pseudomonas savastanoi pv. savastanoi causing the olive knot disease with epiphytic and endophytic bacteria

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the biological control possibilities of Pseudomonas savastanoi pv. savastanoi (Psv) by using epiphytic and endophytic bacteria isolated from the roots and shoots of healthy olive trees. A total of 336 bacterial isolates (196 epiphytes and 140 endophytes) were recovered and diagnosed by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF–MS). In dual culture tests, 81 bacterial strains inhibited pathogen development at different degrees. The highest inhibition value (A-index) was determined in Bacillus megaterium HZEP7 with a 5.24 A-index value, followed by B. subtilis HZEN1 (4.85) and Pseudomonas koreensis HZEN27 (4.83). Mechanisms of antagonist bacterial strains for siderophore and protease production were also investigated by in vitro tests. The strains to be used in vivo tests were determined according to high antagonistic effects and B. subtilis HZEN1, B. megaterium HZEP7, P. koreensis HZEN27, and B. pumilus HZEP29 strains were selected for in vivo tests. In the carrot slices inoculation, the highest inhibition value was detected in B. subtilis HZEN1 with 98.78%, followed by B. megaterium HZEP7 (94.49%), P. koreensis HZEN27 (92.09%), and B. pumilus HZEP29 (90.26%) isolates. Similar to carrot slices in sapling inoculation tests, all bacterial isolates inhibited gall formation. The highest inhibition value was determined in the B. subtilis HZEN1 isolate with 78.72%, followed by B. megaterium HZEP7 (60.87%), P. koreensis HZEN27 (46.09%), and B. pumilus HZEP29 (44.87%) isolates. The obtained results showed that B. subtilis HZEN1, B. megaterium HZEP7, P. koreensis HZEN27, and B. pumilus HZEP29 isolates could be used against Psv, the causal agent of the olive knot disease, as a biocontrol agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alabdalla N, Valentini F, Moretti C, Essa S, Buonaurio R, Abu-Ghorra M (2009) First report of Pseudomonas savastanoi pv. savastanoi causing olive knot in Syria. Plant Pathol 58(6):1170–1170. https://doi.org/10.1111/j.1365-3059.2009.02109.x

    Article  Google Scholar 

  • Alvarez F, De Los Ríos JG, Jimenez P, Rojas A, Reche P, Troya MT (1998) Phenotypic variability in different strains of Pseudomonas syringae subsp. savastanoi isolated from different hosts. Eur J Plant Pathol 104:603–609. https://doi.org/10.1023/A:1008604011154

    Article  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for Protection of Plant Health Under Saline Conditions. In: Maheshwari D. (eds) Bacteria in Agrobiology: Stress Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23465-1_12

  • Balestra GM, Lamichhane JR, Kshetri MB, Mazzaglia A, Varvaro L (2009) First report of olive knot caused by Pseudomonas savastanoi pv. savastanoi in Nepal. Plant Pathol 58(2):393–393. https://doi.org/10.1111/j.1365-3059.2008.02007.x

    Article  Google Scholar 

  • Basim H, Basim E, Ersoy A (2019) Phenotypic and genotypic characterization of Pseudomonas savastanoi pv. savastanoi causing olive knot disease in Turkey. Appl Ecol Environ Res 17:14927–14944

    Article  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouaichi A, Benkirane R, Elkinany S, Habbadi K, Lougraimzi H, Sadik S, Benbouazza A, Achbani E (2019) Potantial effect of antagonistic bacteria in the management of olive knot disease caused by Pseudomonas savastanoi pv. savastanoi. J Microbiol Biotechnol Food Sci 8(4):1035–1040. https://doi.org/10.15414/jmbfs.2019.8.4.1035-1040

    Article  CAS  Google Scholar 

  • Bozkurt IA, Soylu S, Mirik M, Ulubas Serce C, Baysal Ö (2014) Characterization of bacterial knot disease caused by Pseudomonas savastanoi pv. savastanoi on pomegranate (Punica granatum L.) trees: a new host of the pathogen. Lett Appl Microbiol 59(5):520–527. https://doi.org/10.1111/lam.12309

    Article  CAS  PubMed  Google Scholar 

  • Bulgari D, Bozkurt AI, Casati P, Caglayan K, Quaglino F, Bianco PA (2012) Endophytic bacterial community living in roots of healthy and ‘Candidatus Phytoplasma mali’-infected apple (Malus domestica, Borkh.) trees. Antonie Van Leeuwenhoek 102(4):677–687. https://doi.org/10.1007/s10482-012-9766-3

    Article  PubMed  Google Scholar 

  • Duman K, Soylu S (2019) Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Bitki Koruma Bülteni 59(3):59–69. https://doi.org/10.16955/bitkorb.597214

    Article  Google Scholar 

  • Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi KM, Lee JH, Oh BT (2017) Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol Lett 364(23). https://doi.org/10.1093/femsle/fnx225

  • Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi KM, Lee JH, Oh BT (2018) Characterization and assessment of two bio control bacteria against Pseudomonas syringae wilt in Solanum lycopersicum and its genetic responses. Microbiol Res 206:43–49. https://doi.org/10.1016/j.micres.2017.09.003

    Article  PubMed  Google Scholar 

  • El-Bendary MA, Hamed HA, Moharam ME (2016) Potential of Bacillus strains as bio-control agents against some fungal phytopathogens. Biocatal Agric Biotechnol 5:173–178. https://doi.org/10.1016/j.bcab.2016.02.001

    Article  Google Scholar 

  • Ercolani GL (1978) Pseudomonas savastanoi and other bacteria colonizing the surface of olive leaves in the field. Microbiology 109(2):245–257. https://doi.org/10.1099/00221287-109-2-245

    Article  Google Scholar 

  • Filiz Doksöz S, Bozkurt İA (2020a) Determination of olive knot disease (Pseudomonas savastanoi pv. savastanoi) in Olive Production Areas of Hatay Province. Turkish. J Agric Nat Sci 7(1):96–103. https://doi.org/10.30910/turkjans.680020

    Article  Google Scholar 

  • Filiz Doksöz S, Bozkurt İA (2020b) A new and simple pathogenicity test using carrot slices for Pseudomonas savastanoi pv. savastanoi, causal disease agent of olive knot. J Plant Pathol 102:1173–1177. https://doi.org/10.1007/s42161-020-00601-7

    Article  Google Scholar 

  • Fredriksson NJ, Hermansson M, Wilén BM (2013) The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE 8:e76431. https://doi.org/10.1371/journal.pone.0076431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fürnkranz M, Müller H, Berg G (2009) Characterization of plant growth promoting bacteria from crops in Bolivia / Charakterisierung pflanzenwachstumsfördernder Bakterien von Kulturpflanzen in Bolivien. J Plant Disease Protect, 116(4):149–155. http://www.jstor.org/stable/43229052

  • Gardan L, David C, Morel M, Glickmann E, Abu-Ghorrah M, Petit A, Dessaux Y (1992) Evidence for a correlation between auxin production and host plant species among strains of Pseudomonas syringae subsp. savastanoi. Appl Environ Microbiol 58(5):1780–1783

    Article  CAS  Google Scholar 

  • Ghanney N, Locantore P, Nahdi S, Ferchichi A, Iacobellis NS (2016) Potential Biocontrol Effect of the Phylloplane Bacterium Bacillus mojavensis ABC-7 on the Olive Knot Disease. J Plant Pathol Microbiol 7(3):1–5. https://doi.org/10.4172/2157-7471.1000337

    Article  CAS  Google Scholar 

  • Ghazy N, El-Nahrawy S (2021) Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch Microbiol 203(3):1195–1209. https://doi.org/10.1007/s00203-020-02113-5

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Martinez C, Antoun H, Tweddell RJ (2005) Antagonist microorganisms with the ability to control Pythium damping-off of tomato seeds in rockwool. Biocontrol 50:771–786. https://doi.org/10.1007/s10526-005-1312-z

    Article  Google Scholar 

  • Guo Y, Zheng H, Yang Y, Wang H (2007) Characterization of Pseudomonas corrugata strain P94 isolated from soil in Beijing as a potential biocontrol agent. Curr Microbiol 55(3):247–253. https://doi.org/10.1007/s00284-007-0120-3

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbial Biochem Technol 7:96–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Hall BH, Cother EJ, Whattam M, Noble D, Luck J, Cartwright D (2004) First report of olive knot caused by Pseudomonas savastanoi pv. savastanoi on olives (Olea europaea) in Australia. Australas Plant Pathol 33(3):433–436. https://doi.org/10.1071/AP04031

    Article  Google Scholar 

  • Hazarika DJ, Goswami G, Gautom T, Parveen A, Das P, Barooah M, Boro RC (2019) Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 19:71. https://doi.org/10.1186/s12866-019-1440-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Calderón E, Aviles-Garcia ME, Castulo-Rubio DY, Macías-Rodríguez L, Ramírez VM, Santoyo G, López-Bucio J, Valencia-Cantero E (2018) Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol Biol 96(3):291–304. https://doi.org/10.1007/s11103-017-0694-5

    Article  CAS  PubMed  Google Scholar 

  • Kacem M, Kazouz F, Merabet C, Rezki M, de Lajudie P, Bekki A (2009) Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. Grasas Y Aceites 60(2):139–146. https://doi.org/10.3989/gya.074808

    Article  Google Scholar 

  • Kang XM, Cai X, Liu ZQ, Zheng YG (2019) Identification and characterization of an amidase from Leclercia adecarboxylata for efficient biosynthesis of L-phosphinothricin. Biores Technol 289:121658. https://doi.org/10.1016/j.biortech.2019.121658

    Article  CAS  Google Scholar 

  • Karaca İ (1977) Fitobakteriyoloji ve bakteriyel hastalıklar. Ege Üniversitesi Ziraat Fakültesi Yayınları s 247–255, İzmir

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71(10):1020–1024. https://doi.org/10.1094/phyto-71-1020

    Article  Google Scholar 

  • Krid S, Rhouma A, Mogou I, Quesada J, Nesme X, Gargouri A (2010) Pseudomonas savastanoi endophytic bacteria in olive tree knots and antagonistic potential of strains of Pseudomonas fluorescens and Bacillus subtilis. J Plant Pathol 92:335–341. https://doi.org/10.4454/JPP.V92I2.174

    Article  Google Scholar 

  • Krid S, Triki MA, Gargouri A, Rhouma A (2011) Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Ann Microbiol 62:149–154. https://doi.org/10.1007/s13213-011-0239-0

    Article  Google Scholar 

  • Lamichhane JR, Varvaro L (2013) Epiphytic Pseudomonas savastanoi pv. savastanoi can infect and cause olive knot disease on Olea europaea subsp. cuspidata. Australas Plant Pathol 42:219–225. https://doi.org/10.1007/s13313-012-0171-1

    Article  Google Scholar 

  • Liu Y, Zuo S, Xu L, Zou Y, Song W (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194(12):1001–1012. https://doi.org/10.1007/s00203-012-0836-8

    Article  CAS  PubMed  Google Scholar 

  • Marchi G, Mori B, Pollacci P, Mencuccini M, Surico G (2009) Systemic spread of Pseudomonas savastanoi pv. savastanoi in olive explants. Plant Pathol 58(1):152–158. https://doi.org/10.1111/j.1365-3059.2008.01935.x

    Article  Google Scholar 

  • Mina D, Pereira JA, Lino-Neto T, Baptista P (2020a) Screening the olive tree phyllosphere: search and find potential antagonists against Pseudomonas savastanoi pv. savastanoi. Front Microbiol 11:2051. https://doi.org/10.3389/fmicb.2020.02051

  • Mina D, Pereira JA, Lino-Neto T, Baptista P (2020b) Impact of plant genotype and plant habitat in shaping bacterial pathobiome: a comparative study in olive tree. Sci Rep 10:3475. https://doi.org/10.1038/s41598-020-60596-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirik M, Aysan Y, Soylu S (2019) Zeytin dal kanseri, Nar dal kanseri. (Saygılı, H., Şahin, F., Aysan, Y., Soylu, S., Mirik, M., Editör). In: Bitki bakteri hastalıkları. Toprak ofset, No: 2:113–120, Tekirdağ, Türkiye

  • Mishra P, Mishra J, Dwivedi SK, Arora NK (2020) Microbial Enzymes in Biocontrol of Phytopathogens. In: Arora N., Mishra J., Mishra V. (eds) Microbial Enzymes: Roles and Applications in Industries. Microorganisms for Sustainability, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-15-1710-5_10

  • Mohammed AF, Oloyede AR, Odeseye AO (2020) Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch Phytopathol Plant Protect 53(2):1–16. https://doi.org/10.1080/03235408.2020.1715756

    Article  CAS  Google Scholar 

  • Moreno-Pérez A, Pintado A, Murillo J, Caballo-Ponce E, Tegli S, Moretti C, Rodríguez-Palenzuela P, Ramos C (2020) Host range determinants of Pseudomonas savastanoi pathovars of woody hosts revealed by comparative genomics and cross-pathogenicity tests. Front Plant Sci 11:973. https://doi.org/10.3389/fpls.2020.00973

    Article  PubMed  PubMed Central  Google Scholar 

  • Mota MS, Gomes CB, Souza Júnior IT, Moura AB (2017) Bacterial selection for biological control of plant disease: criterion determination and validation. Braz J Microbiol 48(1):62–70. https://doi.org/10.1016/j.bjm.2016.09.003

    Article  CAS  Google Scholar 

  • Nega A (2014) Review on Concepts in Biological Control of Plant Pathogens. J Biol Agric Healthc 4:33–54

    Google Scholar 

  • Pandey A, Palni LM, Hebbar KP (2001) Suppression of damping-off in maize seedlings by Pseudomonas corrugata. Microbiol Res 156(2):191–194. https://doi.org/10.1078/0944-5013-00102

    Article  CAS  PubMed  Google Scholar 

  • Penyalver R, García A, Ferrer A, Bertolini E, Quesada JM, Salcedo CI, Piquer J, Pérez-Panadés J, Carbonell EA, del Río C, Caballero JM, López MM (2006) Factors affecting Pseudomonas savastanoi pv. savastanoi plant inoculations and their use for evaluation of olive cultivar susceptibility. Phytopathology 96(3):313–319. https://doi.org/10.1094/PHYTO-96-0313

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Martínez I, Rodriguez-Moreno L, Matas IM, Ramos C (2007) Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots. Res Microbiol 158(1):60–69. https://doi.org/10.1016/j.resmic.2006.09.008

  • Perez-Martínez I, Rodríguez-Moreno L, Lambertsen L, Matas IM, Murillo J, Tegli S, Jiménez AJ, Ramos C (2010) Fate of a Pseudomonas savastanoi pv. savastanoi type III secretion system mutant in olive plants (Olea europaea L.). Appl Environ Microbiol 76(11):3611–3619. https://doi.org/10.1128/AEM.00133-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Höfte M (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103(4):1007–1020

    Article  CAS  Google Scholar 

  • Pieterese CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  Google Scholar 

  • Quesada JM, García A, Bertolini E, López MM, Penyalver R (2007) Recovery of Pseudomonas savastanoi pv. savastanoi from symptomless shoots of naturally infected olive trees. Int Microbiol 10(2):77–84. https://doi.org/10.2436/20.1501.01.11

    Article  PubMed  Google Scholar 

  • Quesada JM, Penyalver R, Pérez-Panadés J, Salcedo CI, Carbonell EA, López MM (2010) Comparison of chemical treatments for reducing epiphytic Pseudomonas savastanoi pv. savastanoi populations and for improving subsequent control of olive knot disease. Crop Prot 29(12):1413–1420. https://doi.org/10.1016/j.cropro.2010.07.024

    Article  CAS  Google Scholar 

  • Quesada JM, Penyalver R, López MM (2012) “Epidemiology and control of plant diseases caused by phytopathogenic bacteria: the case of olive knot disease caused,” by Pseudomonas savastanoi pv. savastanoi, in Plant Pathology, ed Cumagun CJ, InTechOpen 299–326

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149. https://doi.org/10.1016/j.tibtech.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Roberti R, Zakrisson E, Flamigni F, De Vero L, Cesari A (2002). Antagonistic fungi producing hydrolytic enzymes, active in degrading the cell wall of some foot rot pathogens (Fusarium spp.) of wheat / Antagonistische Pilze, die hydrolytische Enzyme erzeugen, welche zellwandabbauende Aktivität an einigen Erregern der Halmbasiskrankheiten (Fusarium spp.) des Weizens zeigen. Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz / J Plant Disease Prot, 109(1):101–108. Retrieved July 14, 2021, from http://www.jstor.org/stable/43215425

  • Rokni Zadeh H, Khavazi K, Asgharzadeh A, Hosseini-Mazinani M, De Mot R (2008) Biocontrol of Pseudomonas savastanoi, causative agent of olive knot disease: antagonistic potential of non-pathogenic rhizosphere isolates of fluorescent Pseudomonas. Commun Agric Appl Biol Sci 73(1):199–203 (PMID: 18831274)

    CAS  PubMed  Google Scholar 

  • Roy S, Santra HK, Banerjee D (2020) Diversity and Biotechnological Potential of Culturable Rhizospheric Actinomicrobiota. In: Yadav A., Rastegari A., Yadav N., Kour D. (eds) Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-15-3208-5_7

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50:250–256. https://doi.org/10.1016/j.anres.2016.02.003

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  • Sheng MM, Jia HK, Zhang GY, Zeng LN, Zhang TT, Long YH, Lan J, Hu ZQ, Zeng Z, Wang B, Liu HM (2020) Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans. J Microbiol Biotechnol 30:689–699. https://doi.org/10.4014/jmb.1910.10066

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Khadija AH, Kang SM, Seo CW, Lee IJ (2017) Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol Hunga 68(2):175–186. https://doi.org/10.1556/018.68.2017.2.5

    Article  CAS  Google Scholar 

  • Smith EF (1908) Recent studies of the olive tubercle organism. U. S. Department. Agr Bur Plant Industry Bul 131:25-43

  • Smidt M, Kosuge T (1978) The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation in oleander. Physiol Plant Pathol 13(2):203–213. https://doi.org/10.1016/0048-4059(78)90035-8

    Article  CAS  Google Scholar 

  • Surico G, Iacobellis NS, Sisto A (1985) Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi. Physiol Plant Pathol 26(3):309–320. https://doi.org/10.1016/0048-4059(85)90006-2

    Article  CAS  Google Scholar 

  • Tegli S, Gori A, Cerboneschi M, Cipriani MG, Sisto A (2011) Type Three Secretion System in Pseudomonas savastanoi Pathovars: Does Timing Matter? Genes 2(4):957–979. https://doi.org/10.3390/genes2040957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjamos E, Tjamos SE, Antoniou PP (2010) Biological management of plant diseases: highlights on research and application. J Plant Pathol 92(4):17–21. https://doi.org/10.4454/JPP.V92I4SUP.337

    Article  Google Scholar 

  • Tsuji M, Ohta K, Tanaka K, Takikawa Y (2015) First Report of Knot Disease on Olive (Olea europaea) in Japan Caused by Pseudomonas savastanoi pv. savastanoi. Plant Dis 99(10):1445. https://doi.org/10.1094/PDIS-12-14-1318-PDN

    Article  Google Scholar 

  • Ullah A, Mushtaq H, Fahad SH, Hakima A, Chaudhary HJ (2017) Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology 86:119–127. https://doi.org/10.1134/S0026261717010155

    Article  CAS  Google Scholar 

  • Valverde P, Zucchini M, Polverigiani S, Lodolini EM, López FJ, Neri D (2020) Olive knot damages in ten olive cultivars after late-winter frost in central Italy. Sci Hortic 266(190274). https://doi.org/10.1016/j.scienta.2020.109274

  • Varhan R, Bozkurt İA (2019) Investigation on Possible Use of Antagonist Bacteria in Biological Control of Parsley Bacterial Leaf Spot Disease Agent Pseudomonas syringae pv. apii 1th International Congress of the Turkish Journal of Agriculture – Food Science and Technology, Antalya/TURKEY 231

  • Wang Y, Zeng Q, Zhang Z, Yan R, Zhu D (2010) Antagonistic bioactivity of an endophytic bacterium H-6. Afr J Biotech 9:6140–6145. https://doi.org/10.5897/AJB10.258

    Article  Google Scholar 

  • Wreikat BI, Khlaif HM (2017) Epiphytic Population Dynamics of Olive Knot Pathogenic Bacterium, Pseudomonas savastanoi pv. savastanoi. Jordan. J Agric Sci 13(4)

Download references

Acknowledgements

The authors thanks Research Assistant Ahmet Emin Yıldırım for the revision of the manuscript. This study was financially supported by Hatay Mustafa Kemal University, Scientific Research Project Unit by a Grant number 18.D.011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İmam Adem BOZKURT.

Ethics declarations

Informed consent

This manuscript is new and not considered elsewhere. The authors have read and.

approved the submission of this manuscript.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest for this submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FİLİZ DOKSÖZ, S., BOZKURT, İ.A. Biological control of Pseudomonas savastanoi pv. savastanoi causing the olive knot disease with epiphytic and endophytic bacteria. J Plant Pathol 104, 65–78 (2022). https://doi.org/10.1007/s42161-021-00975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-021-00975-2

Keywords

Navigation