Skip to main content

Deep Learning-Based Conjunctival Melanoma Detection Using Ocular Surface Images

  • Chapter
  • First Online:
Deep Learning Applications in Image Analysis

Abstract

The human eye could be affected with conjunctival melanoma, which indicates a fatal malignant growth of the eye. Being a very rare disease, there exists a lack of related data in the literature. Also, very few studies performed deep learning-based conjunctival melanoma detection from the ocular surface images. In response to the research gap, we created a more enriched and well-curated dataset validated by medical experts for conjunctival melanoma detection using deep learning. Furthermore, we have made our dataset available on Kaggle. In the present work, we utilized a total of seven pretrained deep learning-based classification models, that are, DenseNet161, DenseNet201, EfficientNet_B7, GoogLeNet, ResNet18, ResNet50, and ResNet152. We outperformed the prior literature in terms of assessment metrics, including different performance parameters like accuracy, precision, sensitivity, F1-score, specificity, confusion matrix, ROCcurve, and AUROC, with better improvement achieved in multi-label classification. The best AUROC and overall accuracy were found to be around 1.00 and 99.51%, respectively, for binary classification whereas these were around 0.99 and 94.42%, respectively, in case of multi-label classification, from the best performing model, EfficientNet_B7. The deep learning applications in medical images require visual interpretation of the features prioritized in decision-making, and a Grad-CAM-based visualization is added in this study to prove the effectiveness of the best-performing model. The research conducted here may make it simpler to identify conjunctival lesions using state-of-the-art deep learning models more meticulously in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damato, B., & Coupland, S. E. (2008). Conjunctival melanoma and melanosis: a reappraisal of terminology, classification and staging. Clinical & Experimental Ophthalmology, 36(8), 786–795.

    Google Scholar 

  2. Oellers, P., & Karp, C. L. (2012). Management of pigmented conjunctival lesions. The Ocular Surface, 10(4), 251–263.

    Google Scholar 

  3. Yoo, T. K., Choi, J. Y., Kim, H. K., Ryu, I. H., & Kim, J. K. (2021). Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images. Computer Methods and Programs in Biomedicine, 205, 106086.

    Google Scholar 

  4. Shields, C. L., Fasiudden, A., Mashayekhi, A., & Shields, J. A. (2004). Conjunctival nevi: clinical features and natural course in 410 consecutive patients. Archives of Ophthalmology, 122(2), 167–175.

    Google Scholar 

  5. Wong, J. R., Nanji, A. A., Galor, A., & Karp, C. L. (2014). Management of conjunctival malignant melanoma: a review and update. Expert Review of Ophthalmology, 9(3), 185–204.

    Google Scholar 

  6. Isager, P., Engholm, G., Overgaard, J., & Storm, H. (2002). Uveal and conjunctival malignant melanoma in Denmark 1943–97: observed and relative survival of patients followed through 2002. Ophthalmic Epidemiology, 13(2), 85–96.

    Google Scholar 

  7. Chang, A. E., Karnell, L. H., & Menck, H. R. (1998). The National Cancer Data Base report on cutaneous and noncutaneous melanoma: A summary of 84,836 cases from the past decade. Cancer: Interdisciplinary International Journal of the American Cancer Society, 83(8), 1664–1678.

    Google Scholar 

  8. Larsen, A. C., Dahmcke, C. M., Dahl, C., Siersma, V. D., Toft, P. B., Coupland, S. E., et al. (2015). A retrospective review of conjunctival melanoma presentation, treatment, and outcome and an investigation of features associated with BRAF mutations. JAMA Ophthalmology, 133 (11), 1295–1303.

    Google Scholar 

  9. Kao, A., Afshar, A., Bloomer, M., & Damato, B. (2016). Management of primary acquired melanosis, nevus, and conjunctival melanoma. Cancer Control, 23(2), 117–125.

    Google Scholar 

  10. Damato, B., & Coupland, S. E. (2008). Conjunctival melanoma and melanosis: a reappraisal of terminology, classification and staging. Clinical & Experimental Ophthalmology, 36 (8), 786–795.

    Google Scholar 

  11. Hallak, J. A., Scanzera, A., Azar, D. T., & Chan, R. P. (2020). Artificial intelligence in ophthalmology during COVID-19 and in the post COVID-19 era. Current Opinion in Ophthalmology, 31(5), 447.

    Google Scholar 

  12. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., et al. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), 20170387

    Google Scholar 

  13. Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine,  25(1), 44–56.

    Google Scholar 

  14. DuBois, K. N. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Perspectives on Science and Christian Faith, 71(3), 199–201.

    Google Scholar 

  15. Rahman, T., Akinbi, A., Chowdhury, M. E., Rashid, T. A., Şengür, A., Khandakar, A., et al. (2022). COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network. Health Information Science and Systems, 10(1), 1–16.

    Google Scholar 

  16. Rahman, T., Khandakar, A., Islam, K. R., Soliman, M. M., Islam, M. T., Elsayed, A., et al. (2022). HipXNet: Deep learning approaches to detect aseptic loos-ening of hip implants using X-ray images. IEEE Access, 10, 53359–53373.

    Google Scholar 

  17. Abir, F. F., Alyafei, K., Chowdhury, M. E., Khandakar, A., Ahmed, R., Hossain, M. M., et al. (2022). PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data. Computers in Biology and Medicine, 147, 105682.

    Google Scholar 

  18. Chowdhury, M. H., Shuzan, M. N. I., Chowdhury, M. E., Reaz, M. B. I., Mahmud, S., Al Emadi, N., et al. (2022). Lightweight end-to-end deep learning solution for estimating the respiration rate from photoplethysmogram signal. Bioengineering, 9(10), 558.

    Google Scholar 

  19. Wang, G., Ye, J. C., Mueller, K., & Fessler, J. A. (2018). Image reconstruction is a new frontier of machine learning. IEEE Transactions On Medical Imaging, 37(6), 1289–1296.

    Google Scholar 

  20. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234–241).

    Google Scholar 

  21. Haskins, G., Kruger, U., & Yan, P. (2020). Deep learning in medical image registration: A survey. Machine Vision and Applications, 31(1), 1–18.

    Google Scholar 

  22. Karimi, D., Dou, H., Warfield, S. K., & Gholipour, A. (2020). Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Medical Image Analysis, 65, 101759.

    Google Scholar 

  23. Rahman, T., Chowdhury, M. E., Khandakar, A., Mahbub, Z. B., Hossain, M. S. A., Alhatou, A., et al. (2022). BIO-CXRNET: A robust multimodal stacking machine learning technique for mortality risk prediction of COVID-19 patients using chest x-ray Images and clinical data. Neural Computing and Applications.

    Google Scholar 

  24. Tahir, A. M., Qiblawey, Y., Khandakar, A., Rahman, T., Khurshid, U., Musharavati, F., et al. (2022). Deep learning for reliable classification of COVID-19, MERS, and SARS from chest X-ray images. Cognitive Computation, 1–21.

    Google Scholar 

  25. Tahir, A. M., Chowdhury, M. E., Khandakar, A., Rahman, T., Qiblawey, Y., Khurshid, U., et al. (2021). COVID-19 infection localization and severity grading from chest X-ray images Computers in Biology and Medicine, 139, 105002.

    Google Scholar 

  26. Qiblawey, Y., Tahir, A., Chowdhury, M. E., Khandakar, A., Kiranyaz, S., Rahman, T., et al. (2021). Detection and severity classification of COVID-19 in CT images using deep learning. Diagnostics, 11(5), 893.

    Google Scholar 

  27. Pacheco, A. G. C., & Krohling, R. A. (2020). The impact of patient clinical information on automated skin cancer detection. Computers in Biology and Medicine, 116, 103545.

    Google Scholar 

  28. Han, S. S., Park, G. H., Lim, W., Kim, M. S., Na, J. I., Park, I., et al. (2018). Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PloS one, 13(1), e0191493.

    Google Scholar 

  29. Bhimavarapu, U., & Battineni, G. (2022). Skin lesion analysis for melanoma detection using the novel deep learning model fuzzy GC-SCNN. In Healthcare, p. 962.

    Google Scholar 

  30. Martin-Gonzalez, M., Azcarraga, C., Martin-Gil, A., Carpena-Torres, C., Jaen, P., & Health, P. (2022). Efficacy of a deep learning convolutional neural network system for melanoma diagnosis in a hospital population. International Journal of Environmental Research and Public Health, 19(7), 3892.

    Google Scholar 

  31. Haenssle, H. A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., et al. (2018). Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of Oncology, 29(8), 1836–1842.

    Google Scholar 

  32. Brinker, T. J., Hekler, A., Enk, A. H., Klode, J., Hauschild, A., Berking, C., et al. (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer, 111, 148–154.

    Google Scholar 

  33. Yin, G., Gendler, S., & Teichman, J. (2022). Ocular surface squamous neoplasia in a patient following oral steroids for contralateral necrotising scleritis. BMJ Case Reports CP, 15(12), e253300.

    Google Scholar 

  34. Rahman, T., Chowdhury, M. E., Khandakar, A., Mahbub, Z. B., Hossain, M. S. A., Alhatou, A., et al. (2022). BIO-CXRNET: A robust multimodal stacking machine learning technique for mortality risk prediction of COVID-19 patients using chest x-ray images and clinical data. arXiv preprint arXiv:2206.07595

  35. Khandakar, A., Chowdhury, M. E., Reaz, M. B. I., Ali, S. H. M., Kiranyaz, S., Rahman, T., et al. (2022). A novel machine learning approach for severity classification of diabetic foot complications using thermogram images. Sensors, 22(11), 4249.

    Google Scholar 

  36. Rahman, T., Khandakar, A., Islam, K. R., Soliman, M. M., Islam, M. T., Elsayed, A. et al. (2022). HipXNet: Deep learning approaches to detect aseptic loos-ening of hip implants using x-ray images. IEEE Access, 10, 53359–53373.

    Google Scholar 

  37. Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., et al. (2020). Score-CAM: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 24–25).

    Google Scholar 

  38. Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., et al. (2019). Attention gated networks: Learning to leverage salient regions in medical images. Medical Image Analysis, 53, 197–207.

    Google Scholar 

  39. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

    Google Scholar 

  40. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9).

    Google Scholar 

  41. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

    Google Scholar 

  42. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708).

    Google Scholar 

  43. Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105–6114).

    Google Scholar 

  44. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618–626).

    Google Scholar 

  45. Podder, K. K., Chowdhury, M. E., Tahir, A. M., Mahbub, Z. B., Khandakar, A., Hossain, M. S., et al. (2022). Bangla sign language (bdsl) alphabets and numerals classification using a deep learning model. Sensors, 22(2), 574.

    Google Scholar 

Download references

Funding

This work was made possible by Qatar National Research Fund (QNRF) NPRP12S-0227–190164 and International Research Collaboration Co-Fund (IRCC) grant: IRCC-2021–001. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad E. H. Chowdhury .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9971 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Podder, K.K. et al. (2023). Deep Learning-Based Conjunctival Melanoma Detection Using Ocular Surface Images. In: Roy, S.S., Hsu, CH., Kagita, V. (eds) Deep Learning Applications in Image Analysis. Studies in Big Data, vol 129. Springer, Singapore. https://doi.org/10.1007/978-981-99-3784-4_6

Download citation

Publish with us

Policies and ethics